ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 13 задач
Версия для печати
Убрать все задачи

Автор: Фольклор

На доске записаны числа 1, 21, 2², 2³, 24, 25. Разрешается стереть любые два числа и вместо них записать их разность – неотрицательное число.
Может ли на доске в результате нескольких таких операций остаться только число 15?

Вниз   Решение


Напишите в строчку первые 10 простых чисел. Как вычеркнуть 6 цифр, чтобы получилось наибольшее возможное число?

ВверхВниз   Решение


Капитан нашёл Остров Сокровищ, имеющий форму круга. На его берегу растут шесть пальм. Капитан знает, что клад закопан в середине отрезка, соединяющего ортоцентры треугольников ABC и DEF, где A, B, C, D, E, F – эти шесть пальм, но он не знает, какой буквой обозначена каждая пальма. Докажите, что тем не менее он может найти клад с первой же попытки.

ВверхВниз   Решение


Каждую клетку квадратной таблицы 2×2 можно покрасить в чёрный или белый цвет. Сколько существует различных раскрасок этой таблицы?

ВверхВниз   Решение


Найдите недостающие числа:

ВверхВниз   Решение


а) Внутри окружности находится некоторая точка A. Через A провели две перпендикулярные прямые, которые пересекли окружность в четырёх точках.
Докажите, что центр масс этих точек не зависит от выбора таких двух прямых.

б) Внутри окружности находится правильный 2n-угольник  (n > 2),  его центр A не обязательно совпадает с центром окружности. Лучи, выпущенные из A в вершины 2n-угольника, высекают 2n точек на окружности. 2n-угольник повернули так, что его центр остался на месте. Теперь лучи высекают 2n новых точек. Докажите, что их центр масс совпадает с центром масс старых 2n точек.

ВверхВниз   Решение


Докажите, что   .

ВверхВниз   Решение


Найдите наибольшее шестизначное число, у которого каждая цифра, начиная с третьей, равна сумме двух предыдущих цифр.

ВверхВниз   Решение


Одно трехзначное число состоит из различных цифр, следующих в порядке возрастания, а в его названии все слова начинаются с одной и той же буквы. Другое трехзначное число, наоборот, состоит из одинаковых цифр, но в его названии все слова начинаются с разных букв. Какие это числа?

ВверхВниз   Решение


Определение. Последовательность чисел a0, a1,...,an,..., которая удовлетворяет с заданными p и q соотношению

an+2=pan+1+qan (n=0,1,2,...) (11.2)

называется линейной рекуррентной (возвратной) последовательностью второго порядка.
Уравнение
x 2-px-q=0 (11.3)

называется характеристическим уравнением последовательности (a n).
Докажите, что если числа a0, a1 фиксированы, то все остальные члены последовательности {an} определяются однозначно.

ВверхВниз   Решение


В школьном футбольном турнире участвуют 8 команд, одинаково хорошо играющих в футбол. Каждая игра заканчивается победой одной из команд. Случайно выбираемый по жребию номер определяет положение команды в турнирной таблице:

Какова вероятность того, что команды А и B:
  а) встретятся в полуфинале;
  б) встретятся в финале.

ВверхВниз   Решение


Биссектриса внешнего угла при вершине C треугольника ABC пересекает описанную окружность в точке D. Докажите, что AD = BD.

ВверхВниз   Решение


Разложите на простые множители числа 111, 1111, 11111, 111111, 1111111.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 2458]      



Задача 60463

Тема:   [ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 2-
Классы: 5,6,7

Разложите на простые множители числа 111, 1111, 11111, 111111, 1111111.

Прислать комментарий     Решение

Задача 88246

Тема:   [ Деление с остатком ]
Сложность: 2-
Классы: 5,6,7

Изменятся ли частное и остаток, если делимое и делитель увеличить в 3 раза?

Прислать комментарий     Решение

Задача 89919

Тема:   [ Четность и нечетность ]
Сложность: 2-
Классы: 5,6,7

Чётными или нечётными будут сумма и произведение:
  а) двух чётных чисел?
  б) двух нечётных чисел?
  в) чётного и нечётного чисел?

Прислать комментарий     Решение

Задача 30289

Темы:   [ Четность и нечетность ]
[ Замощения костями домино и плитками ]
Сложность: 2
Классы: 5,6,7

Можно ли доску размером 5×5 заполнить доминошками размером 1×2?

Прислать комментарий     Решение

Задача 30290

Темы:   [ Четность и нечетность ]
[ Многоугольники ]
Сложность: 2
Классы: 5,6,7

а) Дан осесимметричный выпуклый 101-угольник. Докажите, что ось симметрии проходит через одну из его вершин.
б) Что можно сказать в случае десятиугольника?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 2458]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .