ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

Докажите, что суммы квадратов расстояний от произвольной точки пространства до противоположных вершин прямоугольника равны между собой.

Вниз   Решение


Найдите расстояние от точки M0(x0;y0;z0) до плоскости Ax+By+Cz+D=0 .

ВверхВниз   Решение


Концы отрезка фиксированной длины движутся по двум скрещивающимся перпендикулярным прямым. По какой траектории движется середина этого отрезка?

ВверхВниз   Решение


Можно ли из последовательности 1, 1/2, 1/3, ... выбрать (сохраняя порядок) сто чисел, из которых каждое, начиная с третьего, равно разности двух предыдущих?

ВверхВниз   Решение


На плоскости отмечено 10 точек так, что никакие три из них не лежат на одной прямой. Сколько существует треугольников с вершинами в этих точках?

ВверхВниз   Решение


Докажите, что если  a + b + c + d > 0,  a > cb > d,  то  |a + b| > |c + d|.

ВверхВниз   Решение


Три купчихи — Сосипатра Титовна, Олимпиада Карповна и Поликсена Уваровна — сели пить чай. Олимпиада Карповна и Сосипатра Титовна выпили вдвоем 11 чашек, Поликсена Уваровна и Олимпиада Карповна — 15, а Сосипатра Титовна и Поликсена Уваровна — 14. Сколько чашек чая выпили все три купчихи вместе?

ВверхВниз   Решение


Сколько существует десятизначных чисел, в записи которых имеется хотя бы две одинаковые цифры?

Вверх   Решение

Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 157]      



Задача 30356

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
Сложность: 3-
Классы: 7,8

Сколькими способами можно разбить 14 человек на пары?

Прислать комментарий     Решение

Задача 30695

Темы:   [ Правило произведения ]
[ Сочетания и размещения ]
[ Классическая комбинаторика (прочее) ]
Сложность: 3-
Классы: 7,8

На прямой отмечено 10 точек, а на параллельной ей прямой – 11 точек.
Сколько существует  а) треугольников;  б) четырёхугольников с вершинами в этих точках?

Прислать комментарий     Решение

Задача 60343

Темы:   [ Правило произведения ]
[ Задачи с ограничениями ]
[ Десятичная система счисления ]
Сложность: 3-
Классы: 7,8

Сколько существует десятизначных чисел, в записи которых имеется хотя бы две одинаковые цифры?

Прислать комментарий     Решение

Задача 60399

Темы:   [ Правило произведения ]
[ Объединение, пересечение и разность множеств ]
[ Раскладки и разбиения ]
Сложность: 3-
Классы: 8,9

Имеется множество C, состоящее из n элементов. Сколькими способами можно выбрать в C два подмножества A и B так, чтобы
а) множества A и B не пересекались;
б) множество A содержалось бы в множестве B?

Прислать комментарий     Решение

Задача 78180

Темы:   [ Правило произведения ]
[ Задачи с ограничениями ]
Сложность: 3-
Классы: 10,11

Рассмотрим лист клетчатой бумаги со стороной клетки, равной 1. Пусть Pk – число всех непересекающихся ломаных длины k, начинающихся в точке O – некотором фиксированном узле сетки. Доказать, что  Pk·3k < 2  для любого k.

Прислать комментарий     Решение

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 157]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .