|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В треугольнике ABC угол A равен 40°. Треугольник случайным образом бросают на стол. Коля и Макс живут в городе с треугольной сеткой дорог (см. рисунок). В этом городе передвигаются на велосипедах, при этом разрешается поворачивать только налево. Коля поехал в гости к Максу и по дороге сделал ровно 4 поворота налево. На следующий день Макс поехал к Коле и приехал к нему, совершив только один поворот налево. Оказалось, что длины их маршрутов одинаковы. Изобразите, каким образом они могли ехать (дома Коли и Макса отмечены). Основанием пирамиды SABC является прямоугольный треугольник ABC ( C – вершина прямого угла). Все боковые грани пирамиды наклонены к её основанию под одинаковым углом, равным arcsin Две окружности радиуса R касаются в точке K. На одной из них взята точка A, на другой — точка B, причем Дан параллелограмм ABCD. Докажите, что подерная окружность точки D относительно треугольника ABC проходит через точку пересечения его диагоналей. Как, не имея никаких измерительных средств, отмерить 50 см от шнурка, длина которого ⅔ метра? Дана прямая l и две точки A и B по одну сторону от нее. Найдите на прямой l точку X так, чтобы длина ломаной AXB была минимальна. |
Страница: 1 2 >> [Всего задач: 8]
Страница: 1 2 >> [Всего задач: 8] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|