|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи
В прямоугольном треугольнике гипотенуза равна c, а острый угол
равен
Точка M внутри окружности делит хорду этой окружности на отрезки, равные a и b. Через точку M проведена хорда AB, делящаяся точкой M пополам. Найдите AB. Окружность проходит через вершины В и D параллелограмма АВСD и пересекает его стороны АВ, ВС, СD и DA в точках M, N, P и K соответственно. Докажите, что MK || NP. Диагонали вписанного четырёхугольника $ABCD$ пересекаются в точке $P$. Биссектриса угла $ABD$ пересекает диагональ $AC$ в точке $E$, а биссектриса угла $ACD$ – диагональ $BD$ в точке $F$. Докажите, что прямые $AF$ и $DE$ пересекаются на медиане треугольника $APD$. Можно ли внутри выпуклого пятиугольника отметить 18 точек так, чтобы внутри каждого из десяти треугольников, образованных его вершинами, отмеченных точек было поровну? Являются ли подобными два прямоугольника: картина в рамке и картина без рамки, если ширина рамки всюду одинакова (см. рис.)? В каждый из углов треугольника ABC вписано по окружности. Из одной вершины окружности, вписанные в два других угла, видны под равными углами. Из другой – тоже. Докажите, что тогда и из третьей вершины две окружности видны под равными углами. В треугольнике ABC проведена медиана AM. Докажите, что 2AM |
Страница: 1 2 >> [Всего задач: 8]
Страница: 1 2 >> [Всего задач: 8] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|