|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Пусть K, L, M и N — середины сторон AB, BC, CD и DA выпуклого четырехугольника ABCD. а) Докажите, что KM б) При фиксированных длинах сторон четырехугольника ABCD найдите максимальные значения длин отрезков KM и LN. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 96]
Некоторые натуральные числа отмечены. Известно, что на каждом отрезке числовой прямой длины 1999 есть отмеченное число.
Две окружности радиуса R пересекаются в точках M и N. Пусть A и B — точки пересечения серединного перпендикуляра к отрезку MN с этими окружностями, лежащие по одну сторону от прямой MN. Докажите, что MN2 + AB2 = 4R2.
а) Докажите, что KM б) При фиксированных длинах сторон четырехугольника ABCD найдите максимальные значения длин отрезков KM и LN.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 96] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|