ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Для тестирования новой программы компьютер выбирает случайное действительное число A из отрезка  [1, 2]  и заставляет программу решать уравнение  3x + A = 0.  Найдите вероятность того, что корень этого уравнения меньше чем –0,4.

Вниз   Решение


Даны натуральные a и b, не равные 0 одновременно. Найти d = НОД(a,b) и такие целые x и y, что d = a . x + b . y.

ВверхВниз   Решение



Основание пирамиды - прямоугольный треугольник с гипотенузой, равной c, и углом в 30o. Боковые ребра пирамиды наклонены к плоскости основания под углом в 45o. Найдите объем пирамиды.

ВверхВниз   Решение


Докажите, что:
а) ($ \lambda$a) $ \vee$ b = $ \lambda$(a $ \vee$ b);
б) a $ \vee$ (b + c) = a $ \vee$ b + a $ \vee$ c.

ВверхВниз   Решение


Дан выпуклый семиугольник. Выбираются четыре произвольных его угла и вычисляются их синусы, от остальных трёх углов вычисляются косинусы. Оказалось, что сумма таких семи чисел не зависит от изначального выбора четырёх углов. Докажите, что у этого семиугольника найдутся четыре равных угла.

ВверхВниз   Решение


Докажите, что медианы треугольника ABC пересекаются в одной точке и делятся ею в отношении 2 : 1, считая от вершины.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 79]      



Задача 57750

Тема:   [ Теорема о группировке масс ]
Сложность: 2
Классы: 9

Докажите, что медианы треугольника ABC пересекаются в одной точке и делятся ею в отношении 2 : 1, считая от вершины.
Прислать комментарий     Решение


Задача 78070

Тема:   [ Теорема о группировке масс ]
Сложность: 3-
Классы: 10,11

В выпуклом четырехугольнике ABCD взят четырехугольник KLMN, образованный центрами тяжести треугольников ABC, BCD, DBA и CDA. Доказать, что прямые, соединяющие середины противоположных сторон четырехугольника ABCD, пересекаются в той же точке, что и прямые, соединяющие середины противоположных сторон четырехугольника KLMN.
Прислать комментарий     Решение


Задача 35157

Тема:   [ Теорема о группировке масс ]
Сложность: 3
Классы: 9,10

Из круга S радиуса 1 вырезали круг S' радиуса 1/2, граница которого проходит через центр исходного круга. Определите, где находится центр тяжести полученной фигуры F.
Прислать комментарий     Решение


Задача 57747

Тема:   [ Основные свойства центра масс ]
Сложность: 3
Классы: 9

а) Докажите, что центр масс существует и единствен для любой системы точек.
б) Докажите, что если X — произвольная точка, а O — центр масс точек X1,..., Xn с массами m1,..., mn, то $ \overrightarrow{XO}$ = $ {\frac{1}{m_1+\ldots+m_n}}$(m1$ \overrightarrow{XX_1}$ +...+ mn$ \overrightarrow{XX_n}$).
Прислать комментарий     Решение


Задача 57748

Тема:   [ Основные свойства центра масс ]
Сложность: 3
Классы: 9

Докажите, что центр масс системы точек X1,..., Xn, Y1,..., Ym с массами a1,..., an, b1,..., bm совпадает с центром масс двух точек — центра масс X первой системы с массой a1 +...+ an и центра масс Y второй системы с массой b1 +...+ bm.
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 79]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .