ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Из любых четырёх точек на плоскости, никакие три из которых не лежат на одной прямой, можно так выбрать три, что треугольник с вершинами в этих точках имеет хотя бы один угол, не больший 45o. Доказать. (Сравните с задачей 2 для 10 класса.)

Вниз   Решение


Пусть α, β и γ - углы треугольника ABC. Докажите, что
а)  sin($ \alpha$/2)sin($ \beta$/2)sin($ \gamma$/2) = r/4R;
б)  tg($ \alpha$/2)tg($ \beta$/2)tg($ \gamma$/2) = r/p;
в)  cos($ \alpha$/2)cos($ \beta$/2)cos($ \gamma$/2) = p/4R.

ВверхВниз   Решение


Докажите, что сумма расстояний от любой точки, расположенной внутри правильного n-угольника, до его сторон не зависит от выбора точки.

ВверхВниз   Решение


Обозначим через S сумму следующего ряда:

S = 1 - 1 + 1 - 1 + 1 -... (12.1)

Преобразовав равенство (12.1 ), можно получить уравнение, из которого находится S:

S = 1 - (1 - 1 + 1 - 1 +...) = 1 - S $\displaystyle \Rightarrow$ S = $\displaystyle {\textstyle\frac{1}{2}}$.

Сумму S можно также найти объединяя слагаемые ряда (12.1 ) в пары:

S = (1 - 1) + (1 - 1) +...= 0 + 0 +...= 0;
S = 1 - (1 - 1) - (1 - 1) -...= 1 - 0 - 0 -...= 1.

Наконец, переставив местами соседние слагаемые, получаем еще одно значение S:

S = - 1 + 1 - 1 + 1 - 1 +...= - 1 + (1 - 1) + (1 - 1) +...= - 1.

Итак, действуя четырьмя разными способами, мы нашли четыре значения суммы S:

S = $\displaystyle {\textstyle\frac{1}{2}}$ = 0 = 1 = - 1.

Какое же значение имеет сумма S в действительности?

ВверхВниз   Решение


Дан равносторонний треугольник со стороной a. Найдите отрезок, соединяющий вершину треугольника с точкой, делящей противоположную сторону в отношении 2 : 1.

ВверхВниз   Решение


Докажите, что abc = 4prR и  ab + bc + ca = r2 + p2 + 4rR.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1331]      



Задача 57600

Тема:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
Сложность: 2+
Классы: 9

Докажите, что:
а)  rp = ra(p - a), rra = (p - b)(p - c) и  rbrc = p(p - a);
б)  S2 = p(p - a)(p - b)(p - c)     (формула Герона);
в)  S2 = rrarbrc.
Прислать комментарий     Решение


Задача 57613

Тема:   [ Длины сторон, высот, медиан и биссектрис ]
Сложность: 2+
Классы: 9

Докажите, что abc = 4prR и  ab + bc + ca = r2 + p2 + 4rR.
Прислать комментарий     Решение


Задача 57614

Тема:   [ Длины сторон, высот, медиан и биссектрис ]
Сложность: 2+
Классы: 9

Докажите, что  $ {\frac{1}{ab}}$ + $ {\frac{1}{bc}}$ + $ {\frac{1}{ca}}$ = $ {\frac{1}{2Rr}}$.
Прислать комментарий     Решение


Задача 57615

Тема:   [ Длины сторон, высот, медиан и биссектрис ]
Сложность: 2+
Классы: 9

Докажите, что $ {\frac{a+b-c}{a+b+c}}$ = tg$ \left(\vphantom{\frac{\alpha }{2}}\right.$$ {\frac{\alpha }{2}}$$ \left.\vphantom{\frac{\alpha }{2}}\right)$tg$ \left(\vphantom{\frac{\beta }{2}}\right.$$ {\frac{\beta}{2}}$$ \left.\vphantom{\frac{\beta }{2}}\right)$.
Прислать комментарий     Решение


Задача 57616

Тема:   [ Длины сторон, высот, медиан и биссектрис ]
Сложность: 2+
Классы: 9

Докажите, что ha = bc/2R.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1331]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .