ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Сколько последовательностей  {a1, a2, ..., a2n},  состоящих из единиц и минус единиц, обладают тем свойством, что  a1 + a2 + ... + a2n = 0,  а все частичные суммы  a1,  a1 + a2,  ...,  a1 + a2 + ... + a2n  неотрицательны?

Вниз   Решение


Докажите, что сумма расстояний от любой точки, расположенной внутри правильного n-угольника, до его сторон не зависит от выбора точки.

ВверхВниз   Решение


Две окружности радиуса R пересекаются в точках M и N. Пусть A и B — точки пересечения серединного перпендикуляра к отрезку MN с этими окружностями, лежащие по одну сторону от прямой MN. Докажите, что MN2 + AB2 = 4R2.

ВверхВниз   Решение


A – шестизначное число, в записи которого по одному разу встречаются цифры 1, 2, 3, 4, 5, 6. Докажите, что A не делится на 11.

ВверхВниз   Решение


Двое по очереди ставят ладей на шахматную доску так, чтобы ладьи не били друг друга. Проигрывает тот, кто не может сделать ход. Кто выиграет?

ВверхВниз   Решение


Имеется три кучки камней: в первой – 10, во второй – 15, в третьей – 20. За ход разрешается разбить любую кучку на две меньшие. Проигрывает тот, кто не сможет сделать ход. Кто выиграет?

ВверхВниз   Решение


Докажите, что площадь S треугольника равна abc/4R.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1331]      



Задача 55433

Темы:   [ Теорема синусов ]
[ Площадь треугольника (прочее) ]
Сложность: 2-
Классы: 8,9

Две окружности с центрами M и N, лежащими на стороне AB треугольника ABC, касаются друг друга и пересекают стороны AC и BC в точках A, P и B, Q соответственно. Причем AM = PM = 2, BN = = QN = 5. Найдите радиус описанной около треугольника ABC окружности, если известно, что отношение площади треугольника AQN к площади треугольника MPB равно 15$ \sqrt{2+\sqrt{3}}$)/(5$ \sqrt{3}$).

Прислать комментарий     Решение


Задача 57582

Тема:   [ Теорема синусов ]
Сложность: 2
Классы: 9

Докажите, что площадь S треугольника равна abc/4R.
Прислать комментарий     Решение


Задача 57583

Тема:   [ Теорема синусов ]
Сложность: 2
Классы: 9

Точка D лежит на основании AC равнобедренного треугольника ABC. Докажите, что радиусы описанных окружностей треугольников ABD и CBD равны.
Прислать комментарий     Решение


Задача 57584

Тема:   [ Теорема синусов ]
Сложность: 2
Классы: 9

Выразите площадь треугольника ABC через длину стороны BC и величины углов B и C.
Прислать комментарий     Решение


Задача 57633

Тема:   [ Взаимоотношения между сторонами и углами треугольников (прочее) ]
Сложность: 2
Классы: 9

Даны две пересекающиеся окружности радиуса R, причем расстояние между их центрами больше R. Докажите, что  β = 3α (рис.).


Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 1331]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .