ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи На отрезке AC взята точка B и на отрезках AB, BC, CA построены полуокружности S1, S2, S3 по одну сторону от AC. D — такая точка на S3, что BD AC. Общая касательная к S1 и S2, касается этих полуокружностей в точках F и E соответственно. а) Докажите, что прямая EF параллельна касательной к S3, проведенной через точку D. б) Докажите, что BFDE — прямоугольник. Решение |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 373]
На плоскости расположены три окружности Ω1, Ω2, Ω3 радиусов r1, r2, r3 соответственно – каждая вне двух других, причём r1 > r2 и r1 > r3. Из точки пересечения общих внешних касательных к окружностям Ω1 и Ω2 проведены касательные к окружности Ω3, а из точки пересечения общих внешних касательных к окружностям Ω1 и Ω3 проведены касательные к окружности Ω2. Докажите, что последние две пары касательных образуют четырёхугольник, в который можно вписать окружность, и найдите её радиус.
а) Докажите, что прямая EF параллельна касательной к S3, проведенной через точку D. б) Докажите, что BFDE — прямоугольник.
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 373] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|