|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Среди пяти внешне одинаковых монет 3 настоящие и две фальшивые, одинаковые по весу, но неизвестно, тяжелее или легче настоящих. Как за наименьшее число взвешиваний найти хотя бы одну настоящую монету? Несколько школьников ходили за грибами. Школьник, набравший наибольшее количество грибов, собрал ⅕ общего количества грибов, а школьник, набравший наименьшее количество грибов, собрал 1/7 часть от общего количества. Сколько было школьников? Вписанная окружность треугольника ABC касается сторон AB, BC и AC в точках C1, A1 и B1 соответственно. Известно, что AC1 = BA1 = CB1. Докажите, что треугольник ABC правильный. |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 285]
В треугольник ABC со сторонами AB = 5, BC = 7, CA = 10 вписана окружность. Прямая, пересекающая стороны AB и BC в точках M и K, касается этой окружности. Найдите периметр треугольника MBK.
Из общей точки проведены к окружности две касательные. Радиус окружности равен 11, а сумма касательных равна 120.
Вписанная окружность треугольника ABC касается сторон AB, BC и AC в точках C1, A1 и B1 соответственно. Известно, что AC1 = BA1 = CB1. Докажите, что треугольник ABC правильный.
AB и AC — касательные к одной окружности,
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 285] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|