|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи а) Докажите, что оси симметрии правильного многоугольника пересекаются в одной точке. б) Докажите, что правильный 2n-угольник имеет центр симметрии. Постройте треугольник ABC по ha, hb и hc. Стороны треугольника не превосходят 1. Докажите, что его площадь не превосходит |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 184]
Диагонали четырёхугольника ABCD пересекаются в точке O.
Среди всех треугольников с заданными сторонами AB и AC найдите тот, у которого наибольшая площадь.
Стороны треугольника не превосходят 1. Докажите, что его площадь не превосходит
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 184] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|