|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Даны 16 чисел: 1, 11, 21, 31 и т.д. (каждое следующее на 10 больше предыдущего). Докажите, что найдутся двадцать москвичей, имеющих одинаковое число волос на голове. На полях A, B и C в левом нижнем углу шахматной доски стоят белые ладьи (см. рис.). Разрешается делать ходы по обычным правилам, однако после любого хода каждая ладья должна быть под защитой какой-нибудь другой ладьи. Можно ли за несколько ходов переставить ладьи так, чтобы каждая попала на обозначенное той же буквой поле в правом верхнем углу? Через данную точку проведите прямую, пересекающую две данные прямые под равными углами. Даны шар и плоскость. На поверхности шара можно делать построения циркулем, а на плоскости – циркулем и линейкой. Миша сложил из восьми брусков куб (см. рис.). Все бруски имеют один и тот же объём, серые бруски одинаковые и белые бруски тоже одинаковые. Какую часть ребра куба составляют длина, ширина и высота белого бруска? Дан треугольник ABC. На сторонах AB и BC взяты точки M и N соответственно, причём AB = 5AM, BC = 3BN. Отрезки AN и CM пересекаются |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 200]
В треугольнике ABC, площадь которого равна 6, на стороне AB взята точка K, делящая эту сторону в отношении AK : BK = 2 : 3,  а на стороне AC взята точка L, делящая AC в отношении AL: LC = 5 : 3. Точка Q пересечения прямых CK и BL, отстоит от прямой AB на расстоянии 1,5. Найдите сторону AB.
Дан треугольник ABC. На сторонах AB и BC взяты точки M и N соответственно, причём AB = 5AM, BC = 3BN. Отрезки AN и CM пересекаются
В треугольнике ABC на стороне AB взята точка K, причём AK : BK = 1 : 2, а на стороне BC взята точка L, причём CL : BL = 2 : 1. Q – точка пересечения прямых AL и CK. Найдите площадь треугольника ABC, если известно, что SBQC = 1.
Пусть E, F, G – такие точки на сторонах соответственно AB, BC, CA треугольника ABC, для которых AE : EB = BF : FC = CG : GA = k : 1, где 0 < k < 1. Найдите отношение площади треугольника, образованного прямыми AF, BG и CE, к площади треугольника ABC.
б) На сторонах BC и AC треугольника ABC взяты точки A1 и B1. Отрезки AA1 и BB1 пересекаются в точке D. Пусть a1, b1, c и d – расстояния от точек A1, B1, C и D до прямой AB. Докажите, что 1/a1 + 1/b1 = 1/c + 1/d.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 200] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|