ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

От балки в форме треугольной призмы с двух сторон отпилили (плоской пилой) по куску. Спилы не задели ни оснований, ни друг друга.
  а) Могут ли спилы быть подобными, но не равными треугольниками?
  б) Может ли один спил быть равносторонним треугольником со стороной 1, а другой – равносторонним треугольником со стороной 2?

Вниз   Решение


Через середину M стороны BC параллелограмма ABCD, площадь которого равна 1, и вершину A проведена прямая, пересекающая диагональ BD в точке O. Найдите площадь четырёхугольника OMCD.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 96]      



Задача 116349

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Признаки и свойства параллелограмма ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Признаки подобия ]
Сложность: 3-
Классы: 8,9,10

Точка M расположена на стороне AB параллелограмма ABCD, причём  BM : MA = 1 : 2.  Отрезки DM и AC пересекаются в точке P. Известно, что площадь параллелограмма ABCD равна 1. Найдите площадь четырёхугольника BCPM.

Прислать комментарий     Решение

Задача 116357

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Площадь фигуры равна сумме площадей фигур, на которые она разбита ]
[ Четырехугольники (прочее) ]
Сложность: 3-
Классы: 8,9,10

На сторонах AB, BC, CD и AD выпуклого четырёхугольника ABCD расположены точки M, N, K и L соответственно, причём AM : MB = 3 : 2, CN : NB = 2 : 3, CK = KD и AL : LD = 1 : 2. Найдите отношение площади шестиугольника MBNKDL к площади четырёхугольника ABCD.

Прислать комментарий     Решение

Задача 54956

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Отношения площадей ]
Сложность: 3
Классы: 8,9

На сторонах AB, BC и AC треугольника ABC взяты точки C1, A1 и B1 соответственно, причём

$\displaystyle {\frac{AC_{1}}{C_{1}B}}$ = $\displaystyle {\frac{BA_{1}}{A_{1}C}}$ = $\displaystyle {\frac{CB_{1}}{B_{1}A}}$ = 2.

Найдите площадь треугольника A1B1C1, если площадь треугольника ABC равна 1.

Прислать комментарий     Решение


Задача 54954

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Признаки подобия ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Через середину M стороны BC параллелограмма ABCD, площадь которого равна 1, и вершину A проведена прямая, пересекающая диагональ BD в точке O. Найдите площадь четырёхугольника OMCD.

Прислать комментарий     Решение

Задача 55000

Темы:   [ Отношение площадей треугольников с общим углом ]
[ Признаки и свойства параллелограмма ]
Сложность: 3
Классы: 8,9

Через точки R и E, принадлежащие сторонам AB и AD параллелограмма ABCD и такие, что  AR = ⅔ AB,  AE = ⅓ AD, проведена прямая.
Найдите отношение площади параллелограмма к площади полученного треугольника.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 96]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .