ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Из любых четырёх точек на плоскости, никакие три из которых не лежат на одной прямой, можно так выбрать три, что треугольник с вершинами в этих точках имеет хотя бы один угол, не больший 45o. Доказать. (Сравните с задачей 2 для 10 класса.)

Вниз   Решение


Пусть α, β и γ - углы треугольника ABC. Докажите, что
а)  sin($ \alpha$/2)sin($ \beta$/2)sin($ \gamma$/2) = r/4R;
б)  tg($ \alpha$/2)tg($ \beta$/2)tg($ \gamma$/2) = r/p;
в)  cos($ \alpha$/2)cos($ \beta$/2)cos($ \gamma$/2) = p/4R.

ВверхВниз   Решение


Докажите, что сумма расстояний от любой точки, расположенной внутри правильного n-угольника, до его сторон не зависит от выбора точки.

ВверхВниз   Решение


Обозначим через S сумму следующего ряда:

S = 1 - 1 + 1 - 1 + 1 -... (12.1)

Преобразовав равенство (12.1 ), можно получить уравнение, из которого находится S:

S = 1 - (1 - 1 + 1 - 1 +...) = 1 - S $\displaystyle \Rightarrow$ S = $\displaystyle {\textstyle\frac{1}{2}}$.

Сумму S можно также найти объединяя слагаемые ряда (12.1 ) в пары:

S = (1 - 1) + (1 - 1) +...= 0 + 0 +...= 0;
S = 1 - (1 - 1) - (1 - 1) -...= 1 - 0 - 0 -...= 1.

Наконец, переставив местами соседние слагаемые, получаем еще одно значение S:

S = - 1 + 1 - 1 + 1 - 1 +...= - 1 + (1 - 1) + (1 - 1) +...= - 1.

Итак, действуя четырьмя разными способами, мы нашли четыре значения суммы S:

S = $\displaystyle {\textstyle\frac{1}{2}}$ = 0 = 1 = - 1.

Какое же значение имеет сумма S в действительности?

ВверхВниз   Решение


Дан равносторонний треугольник со стороной a. Найдите отрезок, соединяющий вершину треугольника с точкой, делящей противоположную сторону в отношении 2 : 1.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 1331]      



Задача 54696

Темы:   [ Теорема косинусов ]
[ Правильный (равносторонний) треугольник ]
Сложность: 3-
Классы: 8,9

Дан равносторонний треугольник со стороной a. Найдите отрезок, соединяющий вершину треугольника с точкой, делящей противоположную сторону в отношении 2 : 1.

Прислать комментарий     Решение


Задача 55254

Тема:   [ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

В треугольнике боковая сторона равна 16 и образует с основанием угол в 60o; другая боковая сторона равна 14. Найдите основание.

Прислать комментарий     Решение


Задача 76421

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
[ Арифметическая прогрессия ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 3-
Классы: 8,9

Доказать: если стороны треугольника образуют арифметическую прогрессию, то радиус вписанного круга равен $ {\frac{1}{3}}$ одной из высот.
Прислать комментарий     Решение


Задача 35607

Тема:   [ Теорема синусов ]
Сложность: 3-
Классы: 9,10

Существует ли невырожденный треугольник АВС, для углов которого выполняется равенство: sinA + sinB = sinC?
Прислать комментарий     Решение


Задача 52620

Темы:   [ Вписанная, описанная и вневписанная окружности; их радиусы ]
[ Углы между биссектрисами ]
Сложность: 3-
Классы: 8,9

Два угла треугольника равны 50o и 100o. Под каким углом видна каждая сторона треугольника из центра вписанной окружности?

Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 1331]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .