|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи В пространстве заданы три луча: DA, DB и DC,
имеющие общее начало D, причём ∠ADB = ∠ADC = ∠BDC = 90°.
Сфера пересекает луч DA в точках A1 и A2, луч
DB – в точках B1 и B2, луч DC
– в точках C1 и C2.
Найдите площадь треугольника A2B2C2,
если площади треугольников DA1B1,
DA1C1, DB1C1 и
DA2B2 равны соответственно
Даны отрезки a, b, c, d и e. С помощью циркуля и линейки постройте отрезок, равный abc/de. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 200]
Даны отрезки a, b и c. С помощью циркуля и линейки постройте отрезок x, для которого x : a = b : c.
Даны отрезки a, b, c, d и e. С помощью циркуля и линейки постройте отрезок, равный abc/de.
На стороне AB треугольника ABC взята точка K, а на стороне BC – точки M и N так, что AB = 4AK, CM = BN, MN = 2BN.
В треугольнике ABC точка D лежит на стороне AC, причём AD = 2DC. Точка E лежит на стороне BC. Площадь треугольника ABD равна 3, площадь треугольника AED равна 1. Отрезки AE и BD пересекаются в точке O. Найдите отношение площадей треугольников ABO и OED.
На сторонах AB, BC и AC треугольника ABC взяты
соответственно точки C1, A1 и B1, причём AC1 : C1B = BA1 : A1C = CB1 : B1A = 2 : 1.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 200] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|