ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Пусть l1, l2 и l3 — соответственные прямые подобных фигур F1, F2 и F3, пересекающиеся в точке W.
а) Докажите, что точка W лежит на окружности подобия фигур F1, F2 и F3.
б) Пусть J1, J2 и J3 — точки пересечения прямых l1, l2 и l3 с окружностью подобия, отличные от точки W. Докажите, что эти точки зависят только от фигур F1, F2 и F3 и не зависят от выбора прямых l1, l2 и l3.

Вниз   Решение


Докажите, что отношение суммы квадратов медиан треугольника к сумме квадратов его сторон равно $ {\frac{3}{4}}$.

ВверхВниз   Решение


В треугольнике две стороны равны 11 и 23, а медиана, проведённая к третьей, равна 10. Найдите третью сторону.

ВверхВниз   Решение


С помощью циркуля и линейки постройте треугольник по углу, противолежащей стороне и разности двух других сторон.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 92]      



Задача 54600

Темы:   [ Построение треугольников по различным элементам ]
[ Серединный перпендикуляр к отрезку (ГМТ) ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по углу, противолежащей стороне и разности двух других сторон.

Прислать комментарий     Решение


Задача 54936

Темы:   [ Построение треугольников по различным элементам ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

С помощью циркуля и линейки по данным отрезкам a, h и m постройте треугольник ABC со стороной BC = a, высотой BH = h и медианой а) BM = m; б) AM = m.

Прислать комментарий     Решение


Задача 116081

Темы:   [ Построение треугольников по различным элементам ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Постройте треугольник по стороне, радиусу вписанной окружности и радиусу вневписанной окружности, касающейся этой стороны. (Исследование проводить не требуется.)

Прислать комментарий     Решение

Задача 53573

Темы:   [ Построение треугольников по различным элементам ]
[ Метод ГМТ ]
Сложность: 4-
Классы: 8,9

Постройте треугольник по медиане и двум углам.

Прислать комментарий     Решение


Задача 54538

Темы:   [ Построение треугольников по различным элементам ]
[ Метод ГМТ ]
Сложность: 4-
Классы: 8,9

С помощью циркуля и линейки постройте треугольник по стороне, противолежащему углу и радиусу вписанной окружности.

Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 92]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .