ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

а) В каждой вершине куба написано число 1 или число 0. На каждой грани куба написана сумма четырёх чисел, написанных в вершинах этой грани. Может ли оказаться, что все числа, написанные на гранях, различны?
б) Тот же вопрос, если в вершинах написаны числа 1 или –1.

Вниз   Решение


В классе 25 учеников. Известно, что у любых двух девочек класса количество друзей-мальчиков из этого класса не совпадает. Какое наибольшее количество девочек может быть в этом классе?

ВверхВниз   Решение


Автор: Фольклор

10 друзей послали друг другу праздничные открытки, так что каждый послал пять открыток.
Докажите, что найдутся двое, которые послали открытки друг другу.

ВверхВниз   Решение


Несколько Совершенно Секретных Объектов соединены подземной железной дорогой таким образом, что каждый Объект напрямую соединён не более чем с тремя другими и от каждого Объекта можно добраться под землей до любого другого, сделав не более одной пересадки. Каково максимальное число Совершенно Секретных Объектов?

ВверхВниз   Решение


Основание каждой высоты треугольника проектируется на стороны треугольника. Докажите, что шесть полученных точек лежат на одной окружности.

ВверхВниз   Решение


На сторонах AD и DC параллелограмма ABCD взяты соответственно точки N и M, причём  AN : AD = 1 : 3,  DM : DC = 1 : 4.  Отрезки BM и CN пересекаются в точке O. Найдите отношение  OM : OB.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 122]      



Задача 53785

Темы:   [ Две пары подобных треугольников ]
[ Подобные треугольники ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 3+
Классы: 8,9

В равнобедренном треугольнике ABC  (AB = BC)  на стороне BC взята точка D так, что  BD : DC = 1 : 4.
В каком отношении прямая AD делит высоту BE треугольника ABC, считая от вершины B?

Прислать комментарий     Решение

Задача 53803

Темы:   [ Две пары подобных треугольников ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

Непараллельные стороны трапеции продолжены до взаимного пересечения и через полученную точку проведена прямая, параллельная основаниям трапеции. Найдите длину отрезка этой прямой, ограниченного продолжениями диагоналей, если длины оснований трапеции равны a и b.

Прислать комментарий     Решение

Задача 53858

Тема:   [ Две пары подобных треугольников ]
Сложность: 3+
Классы: 8,9

Точки A1 и B1 делят стороны BC и AC треугольника ABC в отношениях:  BA1 : A1C = 1 : p  и  AB1 : B1C = 1 : q.
В каком отношении отрезок AA1 делится отрезком BB1?

Прислать комментарий     Решение

Задача 53862

Темы:   [ Две пары подобных треугольников ]
[ Трапеции (прочее) ]
Сложность: 3+
Классы: 8,9

На основании AD трапеции ABCD взята точка E, причём  AE = BC.  Отрезки CA и CE пересекают диагональ BD в точках O и P соответственно.
Докажите, что если  BO = PD,  то  AD² = BC² + AD·BC.

Прислать комментарий     Решение

Задача 53886

Темы:   [ Две пары подобных треугольников ]
[ Признаки и свойства параллелограмма ]
Сложность: 3+
Классы: 8,9

На сторонах AD и DC параллелограмма ABCD взяты соответственно точки N и M, причём  AN : AD = 1 : 3,  DM : DC = 1 : 4.  Отрезки BM и CN пересекаются в точке O. Найдите отношение  OM : OB.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 122]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .