|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что серединный перпендикуляр к отрезку есть геометрическое место точек, равноудалённых от концов этого отрезка. Постройте треугольник ABC по центру описанной окружности O, точке пересечения медиан M и основанию H высоты CH. Среди любых десяти из шестидесяти школьников найдётся три одноклассника.
Обязательно ли среди всех шестидесяти школьников найдётся Дана плоская замкнутая ломаная периметра 1. Доказать, что можно начертить круг радиусом В прямоугольнике ABCD AB = 3, BD = 6 . На продолжении биссектрисы BL треугольника ABD взята точка N, причём точка L делит отрезок BN в отношении 10 : 3, считая от точки B. Что больше: BN или CL? |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 56]
Даны точки A(-6, 1) и B(4, 6). Найдите координаты точки C, делящей отрезок AB в отношении 2 : 3, считая от точки A.
В прямоугольнике ABCD AB = 3, BD = 6 . На продолжении биссектрисы BL треугольника ABD взята точка N, причём точка L делит отрезок BN в отношении 10 : 3, считая от точки B. Что больше: BN или CL?
Окружность отсекает от прямоугольника ABCD четыре прямоугольных треугольника, середины гипотенуз которых A0, B0, C0 и D0 соответственно.
Под каким углом видна из вершины прямого угла прямоугольного треугольника проекция на гипотенузу вписанной окружности?
Даны точки A(x1, y1), B(x2, y2) и неотрицательное число λ. Найдите координаты точки M луча AB, для которой AM : AB = λ.
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 56] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|