ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Будем называть клетчатый многоугольник выдающимся, если он не является прямоугольником и из нескольких его копий можно сложить подобный ему многоугольник. Например, уголок из трёх клеток – выдающийся многоугольник (см. рис.).

  а) Придумайте выдающийся многоугольник из четырёх клеток.
  б) При каких  n > 4  существует выдающийся многоугольник из n клеток?

Вниз   Решение


CM и BN – медианы треугольника ABC, P и Q – такие точки соответственно на AB и AC, что биссектриса угла C треугольника одновременно является биссектрисой угла MCP, а биссектриса угла B – биссектрисой угла NBQ. Оказалось, что  AP = AQ.  Следует ли из этого, что треугольник ABC равнобедренный?

ВверхВниз   Решение


В выпуклом четырёхугольнике ABCD заключены две окружности одинакового радиуса r, касающиеся друг друга внешним образом. Центр первой окружности находится на отрезке, соединяющем вершину A с серединой F стороны CD, а центр второй окружности находится на отрезке, соединяющем вершину C с серединой E стороны AB. Первая окружность касается сторон AB, AD и CD, а вторая окружность касается сторон AB, BC и CD. Найдите AC.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]      



Задача 53147

Темы:   [ Касающиеся окружности ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 4
Классы: 8,9

В выпуклом четырёхугольнике ABCD заключены две окружности одинакового радиуса r, касающиеся друг друга внешним образом. Центр первой окружности находится на отрезке, соединяющем вершину A с серединой F стороны CD, а центр второй окружности находится на отрезке, соединяющем вершину C с серединой E стороны AB. Первая окружность касается сторон AB, AD и CD, а вторая окружность касается сторон AB, BC и CD. Найдите AC.

Прислать комментарий     Решение


Задача 108957

Темы:   [ Против большей стороны лежит больший угол ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 4
Классы: 8,9

Точка D – середина основания AC равнобедренного треугольника ABC . Точка E – основание перпендикуляра, опущенного из точки D на сторону BC . Отрезки AE и BD пересекаются в точке F . Установите, какой из отрезков BF и BE длиннее.
Прислать комментарий     Решение


Задача 55168

Темы:   [ Против большей стороны лежит больший угол ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 4
Классы: 8,9

Докажите, что биссектриса треугольника не меньше высоты и не больше медианы, проведённых из той же вершины.

Прислать комментарий     Решение


Задача 55230

Темы:   [ Неравенства с площадями ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 4+
Классы: 8,9

Внутри треугольника ABC взята точка M. Докажите, что

AM . BC + BM . AC + CM . AB $\displaystyle \geqslant$ 4S,

где S — площадь треугольника ABC.

Прислать комментарий     Решение


Задача 53148

Темы:   [ Касающиеся окружности ]
[ Перпендикуляр короче наклонной. Неравенства для прямоугольных треугольников ]
Сложность: 4+
Классы: 8,9

Точка E стороны BC и точка F стороны AD выпуклого четырёхугольника ABCD расположены так, что BE = 2EC, AF = 2FD. На отрезке AE находится центр окружности радиуса r, касающейся сторон AB, BC и CD. На отрезке BF находится центр окружности такого же радиуса r, касающейся сторон AB, AD и CD. Найдите площадь четырёхугольника ABCD, зная, что указанные окружности внешним образом касаются друг друга.

Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .