|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи
На продолжении боковой стороны AB равнобедренного треугольника
ABC за вершину A взята точка D, причём AD = 2AB. Известно, что
На доске написано число 1. Если на доске написано число а, его можно заменить любым числом вида a + d, где d взаимно просто с а и 10 ≤ d ≤ 20. На сторонах BC, AC и AB треугольника ABC расположены точки A1, B1 и C1 соответственно, причём BA1 : A1C = CB1 : B1A = AC1 : C1B = 1 : 3. Найдите площадь треугольника, образованного пересечениями прямых AA1, BB1 и CC1, если известно, что площадь треугольника ABC равна 1. На плоскости дано n точек и отмечены середины всех отрезков с концами в этих точках. Докажите, что различных отмеченных точек не менее 2n - 3. В треугольнике ABC угол C – прямой, AC : AB = 4 : 5. Окружность с центром на катете AC касается
гипотенузы AB и пересекает катет BC в точке P, причём |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 149]
В равнобедренном треугольнике ABC проведены биссектрисы AD, BE, CF.
Окружность касается стороны BC треугольника ABC в её середине M, проходит через точку A, а отрезки AB и AC пересекает в точках D и E соответственно. Найдите угол A, если известно, что BC = 12, AD = 3,5 и EC =
Окружность проходит через вершины A и B прямоугольника ABCD и касается стороны CD в её середине. Через вершину D проведена прямая, которая касается той же окружности в точке E, а затем пересекает продолжение стороны AB в точке K.
В треугольнике ABC угол C – прямой, AC : AB = 4 : 5. Окружность с центром на катете AC касается
гипотенузы AB и пересекает катет BC в точке P, причём
В треугольнике ABC угол C – прямой, AC : AB = 3 : 5. Окружность с центром на продолжении катета AC за точку C касается продолжения гипотенузы AB за точку B и пересекает катет BC в точке P, причём BP : PC = 1 : 4. Найдите отношение радиуса окружности к катету BC.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 149] |
|||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|