ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

N локомотивов, имеющих номера от 1 до N и установленных на железнодорожную колею, начинают двигаться в одну сторону, причем локомотив номер k изначально движется со скоростью k км/ч. Если локомотив, движущийся с большей скоростью, нагоняет более медленный локомотив, дальше они движутся один за другим со скоростью впереди идущего локомотива. Очевидно, через некоторое время после начала движения локомотивы разобьются на несколько групп, движущихся с разной скоростью.
Написать программу, определяющую, сколько начальных расстановок s из N! Возможных дадут в результате p групп движущихся локомотивов.
Формат входных данных
Два числа — 0 < N < 17 и 0 < p < N + 1.
Формат выходных данных
Одно число — s.

Вниз   Решение


Автор: Вялый М.Н.

а) Каким наименьшим числом прямых можно разрезать все клетки доски 3×3? (Чтобы клетка была разрезана, прямая должна проходить через внутреннюю точку этой клетки.)
б) Та же задача для доски 4×4.

ВверхВниз   Решение


Найдите все значения a, для которых найдутся такие x, y и z, что числа cos x, cos y и cos z попарно различны и образуют в указанном порядке арифметическую прогрессию, при этом числа  cos(x + a),  cos(y + a)  и  cos(z + a)  также образуют в указанном порядке арифметическую прогрессию.

ВверхВниз   Решение


Радиусы двух окружностей равны 27 и 13, а расстояние между центрами равно 50. Найдите длины их общих касательных.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 115]      



Задача 35559

Тема:   [ Общая касательная к двум окружностям ]
Сложность: 2+
Классы: 8,9

На плоскости нарисованы две окружности (см. рис.). Существует ли некоторая точка, лежащая вне каждой из этих окружностей, для которой любая прямая, проходящая через неё, пересекает хотя бы одну из окружностей?

Прислать комментарий     Решение

Задача 52544

Темы:   [ Общая касательная к двум окружностям ]
[ Признаки и свойства касательной ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3-
Классы: 8,9

Даны две окружности радиусов R и r, одина вне другой. К ним проведены две общие внешние касательные. Найдите их длину (между точками касания), если их продолжения образуют прямой угол. (R > r).

Прислать комментарий     Решение


Задача 52723

Темы:   [ Общая касательная к двум окружностям ]
[ Диаметр, основные свойства ]
Сложность: 3
Классы: 8,9

Расстояние между центрами непересекающихся окружностей равно a . Докажите, что точки пересечения общих внешних касательных с общими внутренними касательными лежат на одной окружности и найдите её радиус.
Прислать комментарий     Решение


Задача 52889

Темы:   [ Общая касательная к двум окружностям ]
[ Теорема Пифагора (прямая и обратная) ]
[ Взаимное расположение двух окружностей ]
Сложность: 3
Классы: 8,9

Радиусы двух окружностей равны 27 и 13, а расстояние между центрами равно 50. Найдите длины их общих касательных.

Прислать комментарий     Решение

Задача 53185

Темы:   [ Общая касательная к двум окружностям ]
[ Тригонометрические соотношения в прямоугольном треугольнике ]
Сложность: 3
Классы: 8,9

На плоскости даны две окружности радиусов 4 и 3 с центрами в точках O1 и O2 , касающиеся некоторой прямой в точках M1 и M2 и лежащие по разные стороны от этой прямой. Отношение отрезка O1O2 к отрезку M1M2 равно . Найдите O1O2 .
Прислать комментарий     Решение


Страница: 1 2 3 4 5 6 7 >> [Всего задач: 115]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .