ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В треугольнике ABC известно, что AB = и BC = 2. Окружность проведена через точку B, через середину D отрезка BC, через точку E на отрезке AB и касается стороны AC. Найдите отношение, в котором эта окружность делит отрезок AB, если DE — диаметр этой окружности. Решение |
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 149]
В трапеции KLMN известно, что LMKN, KLM = , LM = l, KN = k, MN = a. Окружность проходит через точки M и N и касается прямой KL в точке A. Найдите площадь треугольника AMN.
Через точку C на окружности проведены касательная, а также хорда BC и хорда DC, BD = c. Расстояния от точек B и D до касательной равны b и d. Найдите площадь треугольника BCD.
Прямая OA касается окружности в точке A, а хорда BC
параллельна OA. Прямые OB и OC вторично пересекают окружность в точках K и L.
Из точки A к окружности радиусом R проводится касательная AM (M — точка касания). Секущая, проходящая через точку A, пересекает окружность в точках K и L, причём L — середина отрезка AK, а угол AMK равен 60o. Найдите площадь треугольника AMK.
Страница: << 14 15 16 17 18 19 20 >> [Всего задач: 149] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|