ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть О – центр правильного многоугольника A1A2A3...An, X
– произвольная точка плоскости. Докажите, что: б) |
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 149]
Окружность касается стороны AD четырёхугольника ABCD в
точке D , а стороны BC – в её середине M . Диагональ
AC пересекает окружность в точках K и L , ( AK<AL ).
Известно, что AK=3 , KL=5 , LC=1 . Лучи AD и BC
пересекаются в точке S , причём
Окружность σ касается равных сторон AB и AC равнобедренного треугольника ABC и пересекает сторону BC в точках K и L . Отрезок AK пересекает σ второй раз в точке M . Точки P и Q симметричны точке K относительно точек B и C соответственно. Докажите, что описанная окружность треугольника PMQ касается окружности σ .
На медианах треугольника как на диаметрах построены три окружности. Известно, что они попарно пересекаются. Пусть C1 – более удалённая от вершины C точка пересечения окружностей, построенных на медианах AM1 и BM2. Точки A1 и B1 определяются аналогично. Докажите, что прямые AA1, BB1 и CC1 пересекаются в одной точке.
Высоты AA1 и BB1 треугольника ABC пересекается в точке H . Прямые AC и A1B1 пересекаются в точке D . Докажите, что прямая DH перпендикулярна медиане BM треугольника ABC .
Отрезок KB является биссектрисой треугольника KLM .
Окружность радиуса 5 проходит через вершину K ,
касается стороны LM в точке B и пересекает сторону
KL в точке A . Найдите угол MKL и площадь
треугольника KLM , если ML=9
Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 149]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке