ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Среди поля проходит прямая дорога, по которой со скоростью 10 км/ч едет автобус. Укажите все точки на поле, из которых можно догнать автобус, если бежать с такой же скоростью.

Вниз   Решение


В пространстве даны две скрещивающиеся перпендикулярные прямые. Найти множество середин всех отрезков данной длины, концы которых лежат на этих прямых.

ВверхВниз   Решение


а) Электрическая схема имеет вид решетки 3×3: всего в схеме 16 узлов (вершины квадратиков решётки), которые соединены проводами (стороны квадратиков решётки). Возможно, часть проводов перегорела. За одно измерение можно выбрать любую пару узлов схемы и проверить, проходит ли между ними ток (то есть, проверить, существует ли цепочка неперегоревших проводов, соединяющая эти узлы). В действительности схема такова, что ток проходит от каждого узла к любому другому. За какое наименьшее число измерений всегда можно в этом удостовериться?

б) Тот же вопрос для решётки 5×5 (всего 36 узлов).

ВверхВниз   Решение


В каждой клетке прямоугольной таблицы размером M×K написано число. Сумма чисел в каждой строке и в каждом столбце равна 1.
Докажите, что  M = K.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 545]      



Задача 88117

Темы:   [ Турниры и турнирные таблицы ]
[ Степень вершины ]
Сложность: 2
Классы: 5,6,7,8

В турнире участвовали шесть шахматистов. Каждые два участника турнира сыграли между собой по одной партии. Сколько всего было сыграно партий? Сколько партий сыграл каждый участник? Сколько очков набрали шахматисты все вместе?

Прислать комментарий     Решение

Задача 32050

Тема:   [ Турниры и турнирные таблицы ]
Сложность: 2
Классы: 6,7,8

В турнире по олимпийской системе (проигравший выбывает) участвует 50 боксеров.
Какое наименьшее количество боев надо провести, чтобы выявить победителя?

Прислать комментарий     Решение

Задача 32092

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
Сложность: 2
Классы: 5,6,7

В каждой клетке прямоугольной таблицы размером M×K написано число. Сумма чисел в каждой строке и в каждом столбце равна 1.
Докажите, что  M = K.

Прислать комментарий     Решение

Задача 88045

Тема:   [ Числовые таблицы и их свойства ]
Сложность: 2
Классы: 5,6,7

Заполните свободные клетки "шестиугольника" (см. рисунок) целыми числами от 1 до 19 так, чтобы во всех вертикальных и диагональных рядах сумма чисел, стоящих в одном ряду, была бы одна и та же.

Прислать комментарий     Решение

Задача 88120

Темы:   [ Числовые таблицы и их свойства ]
[ Подсчет двумя способами ]
Сложность: 2
Классы: 5,6,7

Можно ли таблицу 5×5 заполнить числами так, чтобы сумма чисел в каждой строке была положительной, а сумма чисел в каждом столбце – отрицательной?

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 545]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .