ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

Известно, что множество M точек на прямой может быть покрыто тремя отрезками длины 1.
Каким наименьшим числом отрезков длины 1 можно заведомо покрыть множество середин отрезков с концами в точках множества M?

Вниз   Решение


Четырёхугольник $ABCD$ вписан в окружность, $DC = m$, $DA = n$. На стороне $BA$ взяты точки $A_1$ и $K$, а на стороне $BC$ – точки $C_1$ и $M$. Известно, что $BA_1 = a$, $BC_1 = c$, $BK = BM$ и что отрезки $A_1M$ и $C_1K$ пересекаются на диагонали $BD$. Найдите $BK$ и $BM$.

ВверхВниз   Решение


CH – высота прямоугольного треугольника ABC , проведённая из вершины прямого угла. Докажите, что сумма радиусов окружностей, вписанных в треугольники ACH , BCH и ABC , равна CH .

ВверхВниз   Решение


Докажите, что найдутся двадцать москвичей, имеющих одинаковое число волос на голове.
(Известно, что у человека на голове не более 400000 волос, а в Москве не менее 8 миллионов жителей.)

ВверхВниз   Решение


Можно ли начертить, не отрывая карандаша от бумаги (одним росчерком)
  а) квадрат с диагоналями?
  б) шестиугольник со всеми диагоналями?

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 123]      



Задача 31092

Темы:   [ Степень вершины ]
[ Обход графов ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 6,7,8

Можно ли начертить, не отрывая карандаша от бумаги (одним росчерком)
  а) квадрат с диагоналями?
  б) шестиугольник со всеми диагоналями?

Прислать комментарий     Решение

Задача 31093

Темы:   [ Степень вершины ]
[ Обход графов ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 6,7,8

Существует ли ломаная, пересекающая все рёбра картинки по одному разу?

Прислать комментарий     Решение

Задача 31096

Темы:   [ Степень вершины ]
[ Обход графов ]
Сложность: 3+
Классы: 6,7,8

Доказать, что связный граф можно обойти, проходя по каждому ребру дважды.

Прислать комментарий     Решение

Задача 35598

Темы:   [ Степень вершины ]
[ Четность и нечетность ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9

В системе связи, состоящей из 2001 абонентов, каждый абонент связан ровно с n другими. Определите все возможные значения n.

Прислать комментарий     Решение

Задача 35734

Тема:   [ Степень вершины ]
Сложность: 3+
Классы: 7,8,9

В классе 20 учеников, причём каждый дружит не менее, чем с 14 другими.
Можно ли утверждать, что найдутся четыре ученика, которые все дружат между собой?

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 123]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .