Страница: 1
2 3 4 5 >> [Всего задач: 21]
Можно ли расположить на плоскости
а) 4 точки так, чтобы каждая из них была соединена отрезками с тремя другими (без пересечений)?
б) 6 точек и соединить их непересекающимися отрезками так, чтобы из каждой точки выходило ровно 4 отрезка?
|
|
Сложность: 3 Классы: 6,7,8
|
Грани некоторого многогранника раскрашены в два цвета так, что соседние грани имеют разные цвета. Известно, что все грани, кроме одной, имеют число рёбер, кратное 3. Доказать, что и эта одна грань имеет кратное 3 число рёбер.
[Формула Эйлера]
|
|
Сложность: 3+ Классы: 7,8,9
|
Пусть связный плоский граф с V вершинами и E рёбрами разрезает плоскость на F кусков. Докажите формулу Эйлера: V – E + F = 2.
|
|
Сложность: 3+ Классы: 7,8,9
|
В стране Озёрная семь озер, соединённых между собой десятью непересекающимися каналами, причём от каждого озера можно доплыть до любого другого. Сколько в этой стране островов?
Докажите, что для плоского графа справедливо неравенство 2E ≥ 3F.
Страница: 1
2 3 4 5 >> [Всего задач: 21]