ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Через середину M стороны BC параллелограмма ABCD, площадь которого равна 1, и вершину A проведена прямая, пересекающая диагональ BD в точке O. Найдите площадь четырёхугольника OMCD.

Вниз   Решение


Каждая диагональ выпуклого пятиугольника ABCDE отсекает от него треугольник единичной площади. Вычислите площадь пятиугольника ABCDE.

ВверхВниз   Решение


Одно трехзначное число состоит из различных цифр, следующих в порядке возрастания, а в его названии все слова начинаются с одной и той же буквы. Другое трехзначное число, наоборот, состоит из одинаковых цифр, но в его названии все слова начинаются с разных букв. Какие это числа?

ВверхВниз   Решение


Цифры 1, 2, ..., 9 разбили на три группы. Докажите, что произведение чисел в одной из групп не меньше 72.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 121]      



Задача 35769

Темы:   [ Произведения и факториалы ]
[ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
Сложность: 2+
Классы: 7,8,9

Найдите последние две цифры в десятичной записи числа  1! + 2! + ... + 2001! + 2002!.

Прислать комментарий     Решение

Задача 21993

Темы:   [ Произведения и факториалы ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 7,8,9

Цифры 1, 2, ..., 9 разбили на три группы. Докажите, что произведение чисел в одной из групп не меньше 72.

Прислать комментарий     Решение

Задача 65959

Темы:   [ Произведения и факториалы ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 8,9,10

Верно ли, что любое положительное чётное число можно представить в виде произведения целых чисел, сумма которых равна нулю?

Прислать комментарий     Решение

Задача 67147

Тема:   [ Произведения и факториалы ]
Сложность: 3
Классы: 8,9,10,11

При каком наибольшем натуральном $m$ число $m! \cdot 2022!$ будет факториалом натурального числа?
Прислать комментарий     Решение


Задача 86476

Темы:   [ Произведения и факториалы ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 7,8,9

Доказать, что при натуральном n число  nm + 1  будет составным хотя бы для одного натурального m.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 121]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .