ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

Сколько цифр у числа 21000?

Вниз   Решение


Режем на равные части. Разрежьте фигуру на равные части (на две одинаковые по форме, и по площади части).


ВверхВниз   Решение


Пусть $O$ – центр описанной окружности треугольника $ABC$. На стороне $BC$ нашлись точки $X$ и $Y$ такие, что $AX=BX$ и $AY=CY$. Докажите, что окружность, описанная около треугольника $AXY$, проходит через центры описанных окружностей треугольников $AOB$ и $AOC$.

ВверхВниз   Решение


Биссектрисы, проведённые из вершин A и B треугольника ABC, пересекаются в точке D. Найдите угол ADB, если:
  а)  ∠A = 50°,  ∠B = 100°;
  б)  ∠A = α,  ∠B = β;
  в)  ∠C = 130°;
  г)  ∠C = γ.

ВверхВниз   Решение


AA1 – медиана треугольника ABC. Точка C1 лежит на стороне AB, причём  AC1 : C1B = 1 : 2.  Отрезки AA1 и CC1 пересекаются в точке M.
Найдите отношения  AM : MA1  и  CM : MC1.

ВверхВниз   Решение


В таблице m × n расставлены числа так, что сумма чисел в любой строке или столбце равна 1. Докажите, что m = n.

Примечание. Как ни странно, но в некотором смысле это тоже задача на инвариант.

ВверхВниз   Решение


Докажите, что из 52 целых чисел всегда найдутся два, разность квадратов которых делится на 100.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 369]      



Задача 21977

Тема:   [ Принцип Дирихле (прочее) ]
Сложность: 2+
Классы: 6,7,8

Докажите, что в любой компании из пяти человек есть двое, имеющие одинаковое число знакомых в этой компании.

Прислать комментарий     Решение

Задача 21986

Темы:   [ Принцип Дирихле (прочее) ]
[ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

Докажите, что среди степеней двойки есть две, разность которых делится на 1987.

Прислать комментарий     Решение

Задача 21987

Темы:   [ Принцип Дирихле (прочее) ]
[ Деление с остатком ]
[ Разложение на множители ]
[ Разбиения на пары и группы; биекции ]
Сложность: 2+
Классы: 6,7,8

Докажите, что из 52 целых чисел всегда найдутся два, разность квадратов которых делится на 100.

Прислать комментарий     Решение

Задача 21990

Темы:   [ Принцип Дирихле (прочее) ]
[ Числовые таблицы и их свойства ]
Сложность: 2+
Классы: 6,7,8

В клетках таблицы 3×3 расставлены числа –1, 0, 1.
Докажите, что какие-то две из восьми сумм по всем строкам, всем столбцам и двум главным диагоналям будут равны.

Прислать комментарий     Решение

Задача 21991

Темы:   [ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 2+
Классы: 6,7,8

Сто человек сидят за круглым столом, причём более половины из них – мужчины. Докажите, что какие-то два мужчины сидят друг напротив друга.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 369]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .