ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 7 задач
Версия для печати
Убрать все задачи

В пространстве заданы три луча: DA , DB и DC , имеющие общее начало D , причём ADB = ADC = BDC = 90o . Сфера пересекает луч DA в точках A1 и A2 , луч DB – в точках B1 и B2 , луч DC – в точках C1 и C2 . Найдите площадь треугольника A1B1C1 , если площади треугольников DA2B2 , DA2C2 , DB2C2 и DA1B1 равны соответственно 60, 45, 75 и .

Вниз   Решение


Найдите угол при вершине осевого сечения конуса, если известно, что на его поверхности можно провести три попарно перпендикулярные образующие.

ВверхВниз   Решение


В пирамиде $SABC$ все углы при вершине $S$ прямые. Точки $A'$, $B'$, $C'$ на ребрах $SA$, $SB$, $SC$ соответственно таковы, что треугольники $ABC$ и $A'B'C'$ подобны. Верно ли, что плоскости $ABC$ и $A'B'C'$ параллельны?

ВверхВниз   Решение


В треугольнике ABC отмечена точка O и из неё опущены перпендикуляры OA1, OB1, OC1 на стороны BC, AC, AB соответственно. Пусть A2, B2, C2 – вторые точки пересечения прямых AO, BO, CO с описанной окружностью треугольника ABC. Докажите, что треугольники A1B1C1 и A2B2C2 подобны.

ВверхВниз   Решение


В пространстве заданы три луча: DA , DB и DC , имеющие общее начало D , причём ADB = ADC = BDC = 90o . Сфера пересекает луч DA в точках A1 и A2 , луч DB – в точках B1 и B2 , луч DC – в точках C1 и C2 . Найдите площадь треугольника A2B2C2 , если площади треугольников DA1B1 , DA1C1 , DB1C1 и DA2B2 равны соответственно , 10, 6 и 40.

ВверхВниз   Решение


В треугольной пирамиде боковые рёбра попарно перпендикулярны и равны , и . Найдите объём и площадь основания пирамиды.

ВверхВниз   Решение


В остроугольном треугольнике ABC проведены биссектриса AD и высота BE. Докажите, что  ∠CED > 45°.

Вверх   Решение

Задачи

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 34]      



Задача 55258

Темы:   [ Неравенства для углов треугольника ]
[ Теорема косинусов ]
Сложность: 3-
Классы: 8,9

Определите вид треугольника (относительно его углов), если даны три стороны (или их отношения):

1) 2, 3, 4;

2) 3, 4, 5;

3) 4, 5, 6;

4) 10, 15, 18;

5) 68, 119, 170.

Прислать комментарий     Решение


Задача 108074

Темы:   [ Неравенства для углов треугольника ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Задачи с неравенствами. Разбор случаев ]
Сложность: 3-
Классы: 8,9

Наибольший угол остроугольного треугольника в пять раз больше наименьшего.
Найдите углы этого треугольника, если известно, что все они выражаются целым числом градусов.

Прислать комментарий     Решение

Задача 57455

Тема:   [ Неравенства для углов треугольника ]
Сложность: 3
Классы: 9

Докажите, что 1 - sin($ \alpha$/2) $ \geq$ 2 sin($ \beta$/2)sin($ \gamma$/2).
Прислать комментарий     Решение


Задача 57456

Тема:   [ Неравенства для углов треугольника ]
Сложность: 3
Классы: 9

Докажите, что sin($ \gamma$/2) $ \leq$ c/(a + b).
Прислать комментарий     Решение


Задача 116804

Темы:   [ Неравенства для углов треугольника ]
[ Против большей стороны лежит больший угол ]
[ Биссектриса угла (ГМТ) ]
[ Свойства биссектрис, конкуррентность ]
[ Углы между биссектрисами ]
Сложность: 3
Классы: 8,9,10

В остроугольном треугольнике ABC проведены биссектриса AD и высота BE. Докажите, что  ∠CED > 45°.

Прислать комментарий     Решение

Страница: 1 2 3 4 5 6 7 >> [Всего задач: 34]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .