ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Дима придумал секретный шифр: каждая буква заменяется на слово длиной не больше 10 букв. Шифр называется хорошим, если всякое зашифрованное слово расшифровывается однозначно. Серёжа убедился (с помощью компьютера), что если зашифровать слово длиной не больше 10000 букв, то результат расшифровывается однозначно. Следует ли из этого, что шифр хороший? (В алфавите 33 буквы, под "словом" мы понимаем любую последовательность букв, независимо от того, имеет ли она смысл.)

Вниз   Решение


В основании пирамиды SABC лежит равнобедренная трапеция ABCD , в которой AD=1 , BC= , угол BAD равен arctg 6 . Высота пирамиды проходит через точку O пересечения диагоналей трапеции. Точка E лежит на отрезке SO , причём SE:SO=1:4 . Цилиндр, ось которого параллельна апофеме SM грани SAD ( SM= ), расположен так, что точка E является центром его верхнего основания, а точка O лежит на окружности нижнего основания. Найдите площадь части верхнего основания цилиндра, лежащей внутри пирамиды.

Вверх   Решение

Задачи

Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 70]      



Задача 111171

Темы:   [ Правильная пирамида ]
[ Цилиндр ]
Сложность: 4
Классы: 10,11

В правильной треугольной пирамиде SABC ( S – вершина) AB=4 , высота SO пирамиды равна . Точка D лежит на отрезке SO , причём SD:DO = 2:9 . Цилиндр, ось которого параллельна прямой SA , расположен так, что точка D – центр его верхнего основания, а точка O лежит на окружности нижнего основания. Найдите площадь части верхнего основания цилиндра, лежащей внутри пирамиды.
Прислать комментарий     Решение


Задача 111172

Темы:   [ Четырехугольная пирамида ]
[ Цилиндр ]
Сложность: 4
Классы: 10,11

В основании пирамиды SABC лежит равнобедренная трапеция ABCD , в которой AD=1 , BC= , угол BAD равен arctg 6 . Высота пирамиды проходит через точку O пересечения диагоналей трапеции. Точка E лежит на отрезке SO , причём SE:SO=1:4 . Цилиндр, ось которого параллельна апофеме SM грани SAD ( SM= ), расположен так, что точка E является центром его верхнего основания, а точка O лежит на окружности нижнего основания. Найдите площадь части верхнего основания цилиндра, лежащей внутри пирамиды.
Прислать комментарий     Решение


Задача 111173

Темы:   [ Правильная пирамида ]
[ Цилиндр ]
Сложность: 4
Классы: 10,11

В правильной треугольной пирамиде SABC ( S – вершина) SA= , AB=3 . Точка E лежит на высоте SO пирамиды, причём SE:SO = 2:11 . Цилиндр, ось которого параллельна прямой SB , расположен так, что точка E – центр его верхнего основания, а точка O лежит на окружности нижнего основания. Найдите площадь части верхнего основания цилиндра, лежащей внутри пирамиды.
Прислать комментарий     Решение


Задача 111174

Темы:   [ Четырехугольная пирамида ]
[ Цилиндр ]
Сложность: 4
Классы: 10,11

В основании пирамиды SABC лежит равнобедренная трапеция ABCD , в которой AD=2 , BC=1 , высота трапеции равна 3. Высота пирамиды проходит через точку O пересечения диагоналей трапеции, SO= . Точка F лежит на отрезке SO , причём SF:FO=1:3 . Цилиндр, ось которого параллельна высоте SM грани SAD , расположен так, что точка F является центром его верхнего основания, а точка O лежит на окружности нижнего основания. Найдите площадь части верхнего основания цилиндра, лежащей внутри пирамиды.
Прислать комментарий     Решение


Задача 111223

Темы:   [ Четырехугольная пирамида ]
[ Цилиндр ]
[ Проектирование помогает решить задачу ]
Сложность: 4
Классы: 10,11

В четырёхугольной пирамиде SABCD основанием является трапеция ABCD ( BC || AD ), BC = AD , ASD = CDS = . Все вершины пирамиды лежат на окружностях оснований цилиндра, высота которого равна 2, а радиус основания равен . Найдите объём пирамиды.
Прислать комментарий     Решение


Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 70]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .