|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что если в четырёхгранный угол можно вписать сферу, то суммы противоположных плоских углов этого четырёхгранного угла равны. Сколько плоскостей симметрии может иметь треугольная пирамида? Сторона основания правильной треугольной призмы ABCA1B1C1 равна 4, а боковое ребро равно 3. На ребре BB1 взята точка F , а на ребре CC1 – точка G так, что B1F=1 , CG= Площади граней ABC и ADC тетраэдра ABCD равны P и Q . Докажите, что биссекторная плоскость двугранного угла с ребром AC делит ребро BD в отношении P:Q . Основанием пирамиды служит многоугольник, около которого можно описать окружность. Докажите, что около этой пирамиды можно описать сферу. Найдите радиус этой сферы, если радиус окружности, описанной около основания пирамиды, равен r, высота равна h, а основание высоты совпадает с вершиной основания пирамиды. На ребре BB1 куба ABCDA1B1C1D1 взята точка F так, что B1F = Правильная треугольная призма ABCA1B1C1 пересечена плоскостью, проходящей через середины ребер AB , A1C1 и BB1 . Постройте сечение призмы, найдите площадь сечения и вычислите угол между плоскостью основания ABC и плоскостью сечения, если сторона основания равна 2, а высота призмы равна |
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 64]
На плоскости нарисованы два выпуклых многоугольника P и Q. Для каждой стороны многоугольника P многоугольник Q можно зажать между двумя прямыми, параллельными этой стороне. Обозначим через h расстояние между этими прямыми, а через l – длину стороны и вычислим произведение lh. Просуммировав такие произведения по всем сторонам P, получим некоторую величину (P, Q). Докажите, что (P, Q) = (Q, P).
Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 64] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|