ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 10 задач
Версия для печати
Убрать все задачи

Дана трапеция ABCD с основаниями  AD = 3  и  BC = 18.  Точка M расположена на диагонали AC, причём  AM : MC = 1 : 2.  Прямая, проходящая через точку M параллельно основаниям трапеции, пересекает диагональ BD в точке N. Найдите MN.

Вниз   Решение


При каком наименьшем $n$ для любого набора $A$ из $2007$ множеств найдется такой набор $B$ из $n$ множеств, что каждое множество набора $A$ является пересечением двух различных множеств набора $B$?

ВверхВниз   Решение


Имя входного файла:

stalker.in

Имя выходного файла:

stalker.out

Максимальное время работы на одном тесте:

2 секунды

Максимальный объем используемой памяти:

128 мегабайт

   

В городе Н при невыясненных обстоятельствах территория одного из заводов превратилась в аномальную зону. Все подъезды к территории были перекрыты, а сама она получила название промзоны. В промзоне находятся N зданий, некоторые из них соединены дорогами. По любой дороге можно перемещаться в обоих направлениях.

Начинающий сталкер получил задание добраться до склада в промзоне. Он нашел в электронном архиве несколько карт территории промзоны. Так как карты составлялись разными людьми, то на каждой из них есть информация только о некоторых дорогах промзоны. Одна и та же дорога может присутствовать на нескольких картах.

В пути сталкер может загружать из архива на мобильный телефон по одной карте. При загрузке новой карты предыдущая в памяти телефона не сохраняется. Сталкер может перемещаться лишь по дорогам, отмеченным на карте, загруженной на данный момент. Каждая загрузка карты стоит 1 рубль. Для минимизации расходов сталкеру нужно выбрать такой маршрут, чтобы как можно меньшее число раз загружать карты. Сталкер может загружать одну и ту же карту несколько раз, при этом придется заплатить за каждую загрузку. Изначально в памяти мобильного телефона нет никакой карты.

Требуется написать программу, которая вычисляет минимальную сумму расходов, необходимую сталкеру, чтобы добраться от входа в промзону до склада.

Формат входных данных

В первой строке входного файла находятся два натуральных числа N и K (2 ≤ N ≤ 2000; 1 ≤ K ≤ 2000) - количество зданий промзоны и количество карт соответственно. Вход в промзону находится в здании с номером 1, а склад - в здании с номером N.

В последующих строках находится информация об имеющихся картах. Первая строка описания i-ой карты содержит число ri - количество дорог, обозначенных на i-ой карте. Затем идут ri строк, содержащие по два натуральных числа a и b (1 ≤ a, bN; ab), означающих наличие на i-ой карте дороги, соединяющей здания a и b. Суммарное количество дорог, обозначенных на всех картах, не превышает 300 000 (r1 + r2 + ... + rK ≤ 300 000).

Формат выходных данных

В выходной файл необходимо вывести одно число - минимальную сумму расходов сталкера. В случае, если до склада добраться невозможно, выведите число -1.

Примеры

stalker.in

stalker.out

 

stalker.in

stalker.out

5 3

1

3 4

3

1 2

1 3

2 4

1

4 5

2

 

5 3

2

3 2

4 5

1

2 1

2

1 3

5 4

-1

ВверхВниз   Решение


В треугольнике ABC медианы AE и BD, проведённые к сторонам BC и AC, пересекаются под прямым уголом. Сторона BC равна a. Найдите другие стороны треугольника ABC, если AE2 + BD2 = d2.

ВверхВниз   Решение


В выражении  (x4 + x³ – 3x² + x + 2)2006  раскрыли скобки и привели подобные слагаемые.
Докажите, что при некоторой степени переменной x получился отрицательный коэффициент.

ВверхВниз   Решение


Постройте прямоугольный треугольник по отношению его катетов и высоте, опущенной на гипотенузу.

ВверхВниз   Решение


Кое-кто в классе смотрит футбол, кое-кто – мультики, но нет таких, кто не смотрит ни то, ни другое. У любителей мультиков средний балл по математике меньше 4, у любителей футбола – тоже меньше 4. Может ли средний балл всего класса по математике быть больше 4?

ВверхВниз   Решение


В треугольной призме ABCA1B1C1 точки M и N – середины боковых рёбер AA1 и CC1 соответственно. На отрезках CM и AB1 расположены соответственно точки E и F так, что EF || BN . Найдите отношение EF:BN .

ВверхВниз   Решение


Даны m = 2n + 1 точек — середины сторон m-угольника. Постройте его вершины.

ВверхВниз   Решение


Середины сторон выпуклого шестиугольника образуют шестиугольник, противоположные стороны которого параллельны.
Докажите, что большие диагонали исходного шестиугольника пересекаются в одной точке.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 381]      



Задача 55765

Темы:   [ Гомотетия помогает решить задачу ]
[ Три прямые, пересекающиеся в одной точке ]
[ Свойства медиан. Центр тяжести треугольника. ]
Сложность: 3+
Классы: 8,9

Медианы AA1, BB1 и CC1 треугольника ABC пересекаются в точке M; P – произвольная точка. Прямая la проходит через точку A параллельно прямой PA1, прямые lb и lc определяются аналогично. Докажите, что
  а) прямые la, lb и lc пересекаются в одной точке (обозначим её через Q);
  б) точка M лежит на отрезке PQ, причём  PM : MQ = 1 : 2.

Прислать комментарий     Решение

Задача 55781

Темы:   [ Гомотетия помогает решить задачу ]
[ Три прямые, пересекающиеся в одной точке ]
Сложность: 3+
Классы: 8,9

На каждой из сторон треугольника ABC построено по прямоугольнику так, что они попарно касаются вершинами (см. рисунок).
Докажите, что прямые, соединяющие вершины треугольника ABC с соответствующими вершинами треугольника A1B1C1, пересекаются в одной точке.

Прислать комментарий     Решение

Задача 102209

Темы:   [ Гомотетия помогает решить задачу ]
[ Отношение площадей треугольников с общим основанием или общей высотой ]
[ Формула Герона ]
Сложность: 3+
Классы: 8,9

В треугольник ABC со сторонами  AB = 6,  BC = 5,  AC = 7  вписан квадрат, две вершины которого лежат на стороне AC, одна на стороне AB и одна на стороне BC. Через середину D стороны AC и центр квадрата проведена прямая, которая пересекается с высотой BH в точке M. Найдите площадь треугольника DMC.

Прислать комментарий     Решение

Задача 102210

Темы:   [ Гомотетия помогает решить задачу ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

В треугольник MNK со сторонами  MN = 6,  NK = 7  и углом 60° при вершине N вписан квадрат, две вершины которого лежат на стороне MN, одна на стороне NK и одна на стороне MK. Через середину стороны MN и центр квадрата проведена прямая, которая пересекается с высотой KR треугольника MNK в точке O. Найдите длину отрезка OK.

Прислать комментарий     Решение

Задача 108881

Темы:   [ Гомотетия помогает решить задачу ]
[ Три прямые, пересекающиеся в одной точке ]
[ Средняя линия треугольника ]
Сложность: 3+
Классы: 8,9

Середины сторон выпуклого шестиугольника образуют шестиугольник, противоположные стороны которого параллельны.
Докажите, что большие диагонали исходного шестиугольника пересекаются в одной точке.

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 381]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .