ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

В гости пришло 10 гостей и каждый оставил в коридоре пару калош. Все пары калош имеют разные размеры. Гости начали расходиться по одному, одевая любую пару калош, в которые они могли влезть (т.е. каждый гость мог надеть пару калош, не меньшую, чем его собственные). В какой-то момент обнаружилось, что ни один из оставшихся гостей не может найти себе пару калош, чтобы уйти. Какое максимальное число гостей могло остаться?

Вниз   Решение


Найдите значение выражения 53+log52 .

ВверхВниз   Решение


Длины оснований трапеции равны m см и n см (m и n – натуральные числа,  m ≠ n).  Докажите, что трапецию можно разрезать на равные треугольники.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 150]      



Задача 77991

Темы:   [ Разные задачи на разрезания ]
[ Куб ]
Сложность: 3
Классы: 10,11

Разрезать куб на три равные пирамиды.
Прислать комментарий     Решение


Задача 104003

Темы:   [ Разные задачи на разрезания ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 3
Классы: 7,8,9

Снежная Королева предпочитает идеальные фигуры, поэтому она так любит квадраты. Она дала Каю крест (см. рисунок справа), чтобы тот разделил его на равные части и собрал из них квадрат. Как это можно сделать?

Прислать комментарий     Решение

Задача 104004

Тема:   [ Разные задачи на разрезания ]
Сложность: 3
Классы: 7,8

У Кая имеется кусок шахматной доски 7×7 клеток из драгоценного хрусталя и алмазный нож. Кай хочет, не теряя материала и проводя разрезы только по краям клеток, распилить доску на 6 частей так, чтобы из них сделать три новых квадрата, все разных размеров. Как это сделать?
Прислать комментарий     Решение


Задача 105074

Темы:   [ Разные задачи на разрезания ]
[ Теорема Фалеса и теорема о пропорциональных отрезках ]
[ Трапеции (прочее) ]
Сложность: 3
Классы: 7,8,9

Длины оснований трапеции равны m см и n см (m и n – натуральные числа,  m ≠ n).  Докажите, что трапецию можно разрезать на равные треугольники.

Прислать комментарий     Решение

Задача 115274

Темы:   [ Разные задачи на разрезания ]
[ Проекции оснований, сторон или вершин трапеции ]
Сложность: 3
Классы: 8,9

В равнобокой трапеции одно из оснований в три раза больше другого. Угол при большем основании равен 45o . Покажите, как разрезать трапецию на три части и сложить из них квадрат. Обоснуйте решение.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 150]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .