ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 4 задачи
Версия для печати
Убрать все задачи

Джон, приехав из Диснейленда, рассказывал, что там на заколдованном озере имеются семь островов, с каждого из которых ведет один, три или пять мостов. Верно ли, что хотя бы один из этих мостов обязательно выходит на берег озера?

Вниз   Решение


Прямая, проходящая через центры двух окружностей называется их линией центров.
Докажите, что общие внешние (внутренние) касательные к двум окружностям пересекаются на линии центров этих окружностей.

ВверхВниз   Решение


Гулливер попал в страну лилипутов, имея 7000000 рублей. На все деньги он сразу купил кефир в бутылках по цене 7 рублей за бутылку (пустая бутылка стоила в то время 1 рубль). Выпив весь кефир, он сдал бутылки и на все вырученные деньги сразу купил кефир. При этом он заметил, что и стоимость кефира, и стоимость пустой бутылки выросли в два раза. Затем он снова выпил весь кефир, сдал бутылки, на все вырученные деньги снова купил кефир и т. д. При этом между каждыми двумя посещениями магазина и стоимость кефира, и стоимость пустой бутылки возрастали в два раза. Сколько бутылок кефира выпил Гулливер?

ВверхВниз   Решение


Найдите радиус и координаты центра окружности, заданной уравнением

                               а) (x - 3) 2 + (y + 2)2 = 16;

                               б) x2 + y2 - 2(x - 3y) - 15 = 0;

                               в) x2 + y2 = x + y + $ {\frac{1}{2}}$.

Вверх   Решение

Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 354]      



Задача 116892

Темы:   [ Метод координат на плоскости ]
[ Иррациональные неравенства ]
Сложность: 3
Классы: 10,11

Автор: Фольклор

Изобразите на координатной плоскости множество всех точек, координаты x и у которых удовлетворяют неравенству   .

Прислать комментарий     Решение

Задача 102722

Темы:   [ Метод координат на плоскости ]
[ Окружности (прочее) ]
Сложность: 3
Классы: 8,9

Найдите радиус и координаты центра окружности, заданной уравнением

                               а) (x - 3) 2 + (y + 2)2 = 16;

                               б) x2 + y2 - 2(x - 3y) - 15 = 0;

                               в) x2 + y2 = x + y + $ {\frac{1}{2}}$.

Прислать комментарий     Решение


Задача 108532

Темы:   [ Метод координат на плоскости ]
[ Теорема Пифагора (прямая и обратная) ]
Сложность: 3
Классы: 8,9

Даны точки A(x1, y1) и B(x2, y2). Докажите, что

AB = $\displaystyle \sqrt{(x_{2}-x_{1})^{2} + (y_{2}-y_{1})^{2}}$.

Прислать комментарий     Решение


Задача 108537

Тема:   [ Метод координат на плоскости ]
Сложность: 3
Классы: 8,9

Докажите, что уравнение прямой, проходящей через точки M0(x0;y0) и M1(x1;y1) ( x1$ \ne$x0, y1$ \ne$y0), имеет вид

$\displaystyle {\frac{y-y_{0}}{y_{1}-y_{0}}}$ = $\displaystyle {\frac{x-x_{0}}{x_{1}-x_{0}}}$.

Прислать комментарий     Решение


Задача 108540

Темы:   [ Метод координат на плоскости ]
[ Признаки и свойства касательной ]
Сложность: 3
Классы: 8,9,10

Докажите, что прямая 3x - 4y + 25 = 0 касается окружности x2 + y2 = 25 и найдите координаты точки касания.

Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 354]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .