|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи На плоскости даны треугольник ABC и 10 прямых, среди которых нет параллельных друг другу. Оказалось, что каждая из прямых равноудалена от каких-то двух вершин треугольника ABC. Докажите, что хотя бы три из этих прямых пересекаются в одной точке. В трапеции ABCD углы A и D прямые, AB = 1, CD = 4, AD = 5. На стороне AD взята точка M так, что ∠CMD = 2∠BMA. Окружности S1 и S2 радиуса 1 касаются в точке A; центр O окружности S радиуса 2 принадлежит S1. Окружность S1 касается S в точке B. Докажите, что прямая AB проходит через точку пересечения окружностей S2 и S. |
Страница: 1 2 >> [Всего задач: 9]
Даны различные натуральные числа a, b. На координатной плоскости нарисованы графики функций y = sin ax, y = sin bx и отмечены все точки их пересечения. Докажите, что существует натуральное число c, отличное от a, b и такое, что график функции y = sin cx проходит через все отмеченные точки.
В выпуклом четырёхугольнике тангенс одного из углов равен числу m. Могут ли тангенсы каждого из трёх остальных углов также равняться m?
Дан выпуклый пятиугольник. Петя выписал в тетрадь значения синусов всех его углов, а Вася – значения косинусов всех его углов. Оказалось, что среди выписанных Петей чисел нет четырёх различных. Могут ли все числа, выписанные Васей, оказаться различными?
Сравните: sin 3 и sin 3°.
Найдите все значения a, для которых найдутся такие x, y и z, что числа cos x, cos y и cos z попарно различны и образуют в указанном порядке арифметическую прогрессию, при этом числа cos(x + a), cos(y + a) и cos(z + a) также образуют в указанном порядке арифметическую прогрессию.
Страница: 1 2 >> [Всего задач: 9] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|