|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Найдите трилинейные координаты точек Брокара. Можно ли множество всех натуральных чисел разбить на непересекающиеся конечные подмножества A1, A2, A3, ... так, чтобы при любом натуральном k сумма всех чисел, входящих в подмножество Ak, равнялась k + 2013? |
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 258]
Докажите, что ½ (x² + y²) ≥ xy при любых x и y.
Докажите, что при a, b, c > 0 имеет место неравенство
Докажите, что при x ≥ 0 имеет место неравенство
Докажите, что
Докажите, что
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 258] |
||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|