|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Каждая целочисленная точка плоскости окрашена в один из трех цветов, причем все три цвета присутствуют. Докажите, что найдется прямоугольный треугольник с вершинами трех разных цветов. В Анчурии проходит единый государственный экзамен. Вероятность угадать верный ответ на каждый вопрос экзамена равна 0,25. В 2011 году, чтобы получить аттестат, нужно было ответить верно на три вопроса из 20. В 2012 году Управление школ Анчурии решило, что три вопроса это мало. Теперь нужно верно ответить на шесть вопросов из 40. Спрашивается, если ничего не знать, а просто угадывать ответы, в каком году вероятность получить анчурийский аттестат выше – в 2011 или в 2012? Квадратная таблица размером n×n заполнена неотрицательными числами так, что как сумма чисел каждой строки, так и сумма чисел каждого столбца равна 1. Докажите, что из таблицы можно выбрать n положительных чисел, никакие два из которых не стоят ни в одном столбце, ни в одной строке. |
Страница: 1 2 3 >> [Всего задач: 13]
Решите уравнение
Докажите тождество
Пусть x1 < x2 < ... < xn – действительные числа. Постройте многочлены f1(x), f2(x), ..., fn(x) степени n – 1, которые удовлетворяют условиям fi(xi) = 1 и fi(xj) = 0 при i ≠ j (i, j = 1, 2, ..., n).
Постройте многочлены f(x) степени не выше 2, которые удовлетворяют условиям:
Корабль с постоянной скоростью проплывает мимо небольшого острова. Капитан каждый час измеряет расстояние до острова.
Страница: 1 2 3 >> [Всего задач: 13] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|