ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Решите уравнение  

Вниз   Решение


Король обошёл шахматную доску, побывав на каждом поле ровно один раз и вернувшись последним ходом на исходное поле. (Король ходит по обычным правилам: за один ход он может перейти по горизонтали, вертикали или диагонали на любое соседнее поле.) Когда нарисовали его путь, последовательно соединив центры полей, которые он проходил, получилась замкнутая ломаная без самопересечений. Какую наименьшую и какую наибольшую длину может она иметь? (Сторона клетки равна единице.)

ВверхВниз   Решение


В равнобедренном треугольнике ABC (AC – основание) на стороне BC находятся точки D и E, причём   DE = EC = 2.
Найдите периметр треугольника ABC, если известно, что  AE = 5,  AD = .

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 60879

Темы:   [ Периодические и непериодические дроби ]
[ Функция Эйлера ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если  (m, 10) = 1,  то у десятичного представления дроби 1/m нет предпериода.

Прислать комментарий     Решение

Задача 60881

Тема:   [ Периодические и непериодические дроби ]
Сложность: 3+
Классы: 8,9,10

Пусть  (n, 10) = 1,  m < n,  (m, n) = 1,  и t – наименьшее число, при котором  10t – 1  делится на n.
Докажите, что t кратно длине периода дроби m/n.
Будет ли это длина периода?

Прислать комментарий     Решение

Задача 60882

Тема:   [ Периодические и непериодические дроби ]
Сложность: 3+
Классы: 8,9,10

Репьюнитами называются числа     Докажите, что если  (m, 10) = 1,  то частное  9En/m,  записанное как n-значное число (возможно с нулями в начале), состоит из нескольких периодов десятичного представления дроби 1/m. Кроме того, если еще выполнены условия  (m, 3) = 1  и En – первый репьюнит, делящийся на m, то число  9En/m  будет совпадать с периодом.

Прислать комментарий     Решение

Задача 60883

Темы:   [ Периодические и непериодические дроби ]
[ Теорема Эйлера ]
Сложность: 3+
Классы: 8,9,10

Докажите, что если  (m, 30) = 1,  то число, состоящее из цифр периода дроби 1/m, делится на 9.

Прислать комментарий     Решение

Задача 60886

Темы:   [ Периодические и непериодические дроби ]
[ Функция Эйлера ]
Сложность: 3+
Классы: 9,10,11

Обозначим через  L(m)  длину периода дроби 1/m. Докажите, что если  (m, 10) = 1,  то  L(m)  является делителем числа φ(m).

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .