|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В квадратной песочнице, засыпанной ровным слоем песка высотой 1, Маша и Паша делали куличи при помощи цилиндрического ведёрка высоты 2. У Маши все куличи удались, а у Паши — рассыпались и превратились в конусы той же высоты. В итоге весь песок ушёл на куличи, поставленные на дне песочницы отдельно друг от друга. Чьих куличей оказалось в песочнице больше: Машиных или Пашиных? Бильярдный стол имеет форму многоугольника (не обязательно выпуклого), у которого соседние стороны перпендикулярны друг другу. Вершины этого многоугольника – лузы, при попадании в которые шар там и остаётся. Из вершины A с (внутренним) углом 90° выпущен шар, который отражается от бортов (сторон многоугольника) по закону "угол падения равен углу отражения". Докажите, что он никогда не вернётся в вершину A. |
Страница: 1 2 3 4 >> [Всего задач: 17]
Доказать, что площадь прямоугольника, вписанного в треугольник, не превосходит половины площади этого треугольника.
Пусть Р – произвольная точка внутри треугольника АВС. Обозначим через А1, В1 и С1 точки пересечения прямых АР, ВР и СР соответственно со сторонами ВС, СА и АВ. Упорядочим площади треугольников АВ1С1, А1ВС1, А1В1С, обозначив меньшую через S1, среднюю – S2, а большую – S3. Докажите, что
Треугольное сечение куба касается вписанного в куб шара. Докажите, что площадь этого сечения меньше половины площади грани куба.
Страница: 1 2 3 4 >> [Всего задач: 17] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|