|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Докажите, что сумма расстояний от центра правильного семиугольника до всех его вершин меньше, чем сумма расстояний до них от любой другой точки. В выпуклом четырехугольнике найдите точку, для которой сумма расстояний до вершин минимальна. Диагонали выпуклого четырехугольника ABCD пересекаются в точке O. Какую наименьшую площадь может иметь этот четырехугольник, если площадь треугольника AOB равна 4, а площадь треугольника COD равна 9? Дан ромб ABCD . Радиусы окружностей, описанных около треугольников ABD и ACD , равны 4 и 3. Найдите расстояние между центрами этих окружностей. Двойным отношением четырёх комплесных чисел называется число |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 121]
Можно ли все натуральные делители числа 100! (включая 1 и само число) разбить на две группы так, чтобы в обеих группах было одинаковое количество чисел и произведение чисел первой группы равнялось произведению чисел второй группы?
Какое наименьшее количество множителей требуется вычеркнуть из числа 99! так, чтобы произведение оставшихся множителей оканчивалось на 2?
На доске написано число 1. Если на доске написано число а, его можно заменить любым числом вида a + d, где d взаимно просто с а и 10 ≤ d ≤ 20.
В произведении трёх натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно на 2016?
В произведении пяти натуральных чисел каждый сомножитель уменьшили на 3. Могло ли произведение при этом увеличиться ровно в 15 раз?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 121] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|