ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Известно, что целые числа a, b, c удовлетворяют равенству  a + b + c = 0.  Докажите, что  2a4 + 2b4 + 2c4  – квадрат целого числа.

Вниз   Решение


В китайской натурофилософии выделяются пять первоэлементов природы – дерево, огонь, металл, вода и земля, которым соответствуют пять цветов – синий (или зелёный), красный, белый, чёрный и жёлтый. В восточном календаре с древних времен используется 12-летний животный цикл так, что каждому из 12 годов в цикле соответствует одно из животных. Кроме того, каждый год проходит под покровительством одной из стихий и окрашивается в один из цветов:
  годы, оканчивающиеся на 0 и 1 – годы металла (цвет белый);
  годы, оканчивающиеся на 2 и 3 – это годы воды (цвет чёрный);
  годы, оканчивающиеся на 4 и 5 – годы дерева (цвет синий);
  годы, оканчивающиеся на 6 и 7 – годы огня (цвет красный);
  годы, оканчивающиеся на 8 и 9 – годы земли (цвет жёлтый).
В 60-летнем календарном цикле каждое животное возникает пять раз. С помощью китайской теоремы об остатках объясните, почему оно все пять раз бывает разного цвета.

Вверх   Решение

Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 1023]      



Задача 60381

Темы:   [ Сочетания и размещения ]
[ Системы точек и отрезков (прочее) ]
Сложность: 2
Классы: 7,8

На плоскости дано n точек. Сколько имеется отрезков с концами в этих точках?

Прислать комментарий     Решение

Задача 61419

Темы:   [ Раскладки и разбиения ]
[ Перебор случаев ]
Сложность: 2
Классы: 8,9,10

Найдите число всех диаграмм Юнга с весом s, если
а)  s = 4;   б)  s = 5;   в)  s = 6;   г)  s = 7.
Определение диаграмм Юнга смотри в справочнике.

Прислать комментарий     Решение

Задача 88193

Тема:   [ Сочетания и размещения ]
Сложность: 2
Классы: 5,6,7,8

В обыкновенном наборе домино 28 косточек. Сколько косточек содержал бы набор домино, если бы значения, указанные на косточках, изменялись не от 0 до 6, а от 0 до 12?

Прислать комментарий     Решение

Задача 103781

Тема:   [ Обход графов ]
Сложность: 2
Классы: 6,7

Автор: Ботин Д.А.

Пешеход обошёл шесть улиц одного города, пройдя каждую ровно два раза, но не смог обойти их, пройдя каждую лишь раз. Могло ли это быть?

Прислать комментарий     Решение

Задача 103818

Темы:   [ Классическая комбинаторика (прочее) ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2
Классы: 6,7

Каких прямоугольников с целыми сторонами больше: с периметром 1996 или с периметром 1998?
(Прямоугольники a×b и b×a считаются одинаковыми.)

Прислать комментарий     Решение

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 1023]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .