ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

В каждой вершине куба записано по числу. Вместо каждого числа записывают среднее арифметическое чисел, стоящих в трёх соседних вершинах (числа заменяют одновременно). После десяти таких операций в каждой вершине оказалось исходное число. Обязательно ли все исходные числа были одинаковы?

Вниз   Решение


Можно ли уместить два точных куба между соседними точными квадратами?
Иными словами, имеет ли решение в целых числах неравенство:  n² < a³ < b³ < (n + 1)²?

ВверхВниз   Решение


Дан треугольник ABC. Точки M1, M2, M3 – середины сторон AB, BC и AC, a точки H1, H2, H3 – основания высот, лежащие на тех же сторонах.
Докажите, что из отрезков H1M2, H2M3 и H3M1 можно построить треугольник.

ВверхВниз   Решение


Дан отрезок длины    Можно ли построить циркулем и линейкой (на которой нет делений) отрезок длины 1?

ВверхВниз   Решение


Отрезок единичной длины разбили на 11 отрезков, длина каждого из которых не превосходит а.
При каких значениях а можно утверждать, что из любых трёх получившихся отрезков можно составить треугольник?

Вверх   Решение

Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 43]      



Задача 65852

Темы:   [ Многоугольники (прочее) ]
[ Системы точек и отрезков. Примеры и контрпримеры ]
Сложность: 3+
Классы: 9,10,11

Дан выпуклый 100-угольник. Докажите, что можно отметить такие 50 точек внутри этого многоугольника, что каждая вершина будет лежать на прямой, проходящей через какие-то две из отмеченных точек.

Прислать комментарий     Решение

Задача 65854

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 3+
Классы: 9,10,11

Докажите, что любая натуральная степень многочлена  P(x) = x4 + x³ – 3x² + x + 2  имеет хотя бы один отрицательный коэффициент.

Прислать комментарий     Решение

Задача 65816

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Примеры и контрпримеры. Конструкции ]
[ Теория алгоритмов (прочее) ]
[ Связность и разложение на связные компоненты ]
[ Оценка + пример ]
Сложность: 4-
Классы: 7,8,9

Шахматная фигура может сдвигаться на 8 или 9 клеток по горизонтали или вертикали. Запрещается ходить на одну и ту же клетку дважды.
Какое наибольшее количество клеток может обойти эта фигура на доске 15×15? (Начать обход разрешается с любой клетки.)

Прислать комментарий     Решение

Задача 65817

Тема:   [ Взвешивания ]
Сложность: 4-
Классы: 7,8,9,10,11

Есть шесть монет, одна из которых фальшивая (она отличается по весу от настоящей, но её вес, как и вес настоящей монеты, неизвестен).
Как за три взвешивания с помощью весов, показывающих общий вес взвешиваемых монет, найти фальшивую монету?

Прислать комментарий     Решение

Задача 65824

Темы:   [ Длины сторон (неравенства) ]
[ Неравенства для углов треугольника ]
[ Признаки и свойства параллелограмма ]
[ Признаки и свойства равнобедренного треугольника. ]
Сложность: 4-
Классы: 8

Продолжения сторон AB и CD выпуклого четырёхугольника ABCD пересекаются в точке K. Известно, что  AD = BC.  Пусть M и N – середины сторон AB и CD. Докажите, что треугольник MNK тупоугольный.

Прислать комментарий     Решение

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 43]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .