ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В прямоугольном треугольнике $ABC$ ($\angle C=90^{\circ}$) вписанная окружность касается катета $BC$ в точке $K$. Докажите, что хорда вписанной окружности, высекаемая прямой $AK$ в два раза больше, чем расстояние от вершины $C$ до этой прямой.

Вниз   Решение


Айрат выписал подряд все числа месяца: 123456789101112... и покрасил три дня (дни рождения своих друзей), никакие два из которых не идут подряд. Оказалось, что все непокрашенные участки состоят из одинакового количества цифр. Докажите, что первое число месяца покрашено.

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 15]      



Задача 110207  (#10.2.3)

Темы:   [ Алгебраические задачи на неравенство треугольника ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 7,8,9

Натуральные числа от 1 до 200 разбили на 50 множеств.
Докажите, что в одном из них найдутся три числа, являющиеся длинами сторон некоторого треугольника.

Прислать комментарий     Решение

Задача 65176  (#10.3.1)

Тема:   [ Квадратные неравенства и системы неравенств ]
Сложность: 3+
Классы: 10,11

По положительным числам х и у вычисляют  а = 1/y  и  b = y + 1/x.  После этого находят С – наименьшее число из трёх: x, a и b.
Какое наибольшее значение может принимать C?

Прислать комментарий     Решение

Задача 65177  (#10.3.2)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Теорема синусов ]
Сложность: 3+
Классы: 9,10,11

Четырёхугольник ABCD вписан в окружность,  АС = а,  BD = b,  ABCD.  Найдите радиус окружности.

Прислать комментарий     Решение

Задача 65178  (#10.3.3)

Темы:   [ Турниры и турнирные таблицы ]
[ Принцип крайнего (прочее) ]
[ Принцип Дирихле (прочее) ]
Сложность: 4-
Классы: 9,10,11

В турнире участвовало 11 шахматистов: 4 – из России и 7 зарубежных. Каждый шахматист сыграл с каждым по две партии (выигрыш – 1 очко, ничья – 0,5 очка, поражение – 0). По окончании турнира оказалось, что все участники набрали различное количество очков, причем сумма очков, набранных россиянами, равна сумме очков, набранных иностранцами. Могло ли в тройке призеров не оказаться ни одного россиянина?

Прислать комментарий     Решение

Задача 65179  (#10.4.1)

Темы:   [ Последовательности (прочее) ]
[ Принцип крайнего (прочее) ]
[ Доказательство от противного ]
Сложность: 4-
Классы: 10,11

Найдите все строго возрастающие последовательности натуральных чисел a1, a2, ..., an, ..., в которых  a2 = 2  и  anm = anam  для любых натуральных n и m.

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .