|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Пирог имеет форму правильного n-угольника, вписанного в окружность радиуса 1. Из середин сторон проведены прямолинейные надрезы длины 1. Доказать, что при этом от пирога будет отрезан какой-нибудь кусок. Многоугольник, описанный около окружности радиуса r, разрезан на треугольники (произвольным образом). Докажите, что сумма радиусов вписанных окружностей этих треугольников больше r. Дан треугольник со сторонами a, b и c, причём a ≥ b ≥ c; x, y и z – углы некоторого другого треугольника. Докажите, что bc + ca – ab < bc cos x + ca cos y + ab cos z ≤ ½ (a² + b² + c²). Даны три параллельные прямые на равных расстояниях друг от друга. Как надо изображать точками соответствующих прямых величины сопротивления, напряжения и силы тока в проводнике, чтобы, прикладывая линейку к точкам, изображающим значения сопротивления R и значения силы тока I, получить на шкале напряжения точку, изображающую величину напряжения V = I . R (точка каждой шкалы изображает одно и только одно число). |
Страница: 1 [Всего задач: 5]
У Алёши есть пирожные, разложенные в несколько коробок. Алёша записал, сколько пирожных в каждой коробке. Серёжа взял по одному пирожному из каждой коробки и положил их на первый поднос. Затем он снова взял по одному пирожному из каждой непустой коробки и положил их на второй поднос – и так далее, пока все пирожные не оказались разложенными по подносам. После этого Серёжа записал, сколько пирожных на каждом подносе. Докажите, что количество различных чисел среди записанных Алёшей равно количеству различных чисел среди записанных Серёжей.
Решите систему уравнений (n > 2) x1 – x2 = 1.
В окружность радиуса 2 вписан тридцатиугольник A1A2...A30. Докажите, что на дугах A1A2, A2A3, ..., A30A1 можно отметить по одной точке (B1, B2, ..., B30 соответственно) так, чтобы площадь шестидесятиугольника A1B1A2B2...A30B30 численно равнялась периметру тридцатиугольника A1A2...A30.
Существует ли арифметическая прогрессия из пяти различных натуральных чисел, произведение которых есть точная 2008-я степень натурального числа?
На клетчатом листе бумаги нарисованы несколько прямоугольников, их стороны идут по сторонам клеток. Каждый прямоугольник состоит из нечётного числа клеток, и никакие два прямоугольника не содержат общих клеток. Докажите, что эти прямоугольники можно раскрасить в четыре цвета так, чтобы у прямоугольников одного цвета не было общих точек границы.
Страница: 1 [Всего задач: 5] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|