ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 109523  (#93.5.10.3)

Темы:   [ Инварианты и полуинварианты (прочее) ]
[ Квадратный трехчлен (прочее) ]
[ Процессы и операции ]
Сложность: 4-
Классы: 9,10,11

Автор: Перлин А.

Квадратный трёхчлен  f(x) разрешается заменить на один из трёхчленов      или     Можно ли с помощью таких операций из квадратного трёхчлена  x² + 4x + 3  получить трёхчлен  x² + 10x + 9?

Прислать комментарий     Решение

Задача 109517  (#93.5.10.4)

Темы:   [ Математическая логика (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Рекуррентные соотношения (прочее) ]
Сложность: 5+
Классы: 9,10,11

Автор: Ляшко О.

За круглым столом сидит компания из тридцати человек. Каждый из них либо дурак, либо умный. Всех сидящих спрашивают: Кто Ваш сосед справа – умный или дурак? В ответ умный говорит правду, а дурак может сказать как правду, так и ложь. Известно, что количество дураков не превосходит F . При каком наибольшем значении F всегда можно, зная эти ответы, указать на умного человека в этой компании?
Прислать комментарий     Решение


Задача 109525  (#93.5.10.5)

Темы:   [ Арифметика остатков (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Целые числа x, y и z таковы, что  (x – y)(y – z)(z – x) = x + y + z.  Докажите, что число  x + y + z  делится на 27.

Прислать комментарий     Решение

Задача 109518  (#93.5.10.6)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Признаки подобия ]
[ Площадь треугольника (через высоту и основание) ]
Сложность: 4
Классы: 8,9,10

Верно ли, что любые два прямоугольника равной площади можно расположить на плоскости так, что любая горизонтальная прямая, пересекающая один из них, будет пересекать и второй, причём по отрезку той же длины?

Прислать комментарий     Решение

Задача 109519  (#93.5.10.7)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
[ Таблицы и турниры (прочее) ]
Сложность: 4
Классы: 8,9,10

Квадратная доска разделена сеткой горизонтальных и вертикальных прямых на n² клеток со стороной 1. При каком наибольшем n можно отметить n клеток так, чтобы каждый прямоугольник площади не менее n со сторонами, идущими по линиям сетки, содержал хотя бы одну отмеченную клетку?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .