ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Годы:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1124]      



Задача 65693

Темы:   [ Квадратный трехчлен (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3
Классы: 9,10,11

Даны квадратные трёхчлены  f1(x),  f2(x), ...,  f100(x) с одинаковыми коэффициентами при x², одинаковыми коэффициентами при x, но различными свободными членами; у каждого из них есть по два корня. У каждого трёхчлена fi(x) выбрали один корень и обозначили его через xi. Какие значения может принимать сумма  f2(x1) + f3(x2) + ... + f100(x99) + f1(x100)?

Прислать комментарий     Решение

Задача 65701

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Хорды и секущие (прочее) ]
[ Вспомогательные подобные треугольники ]
[ Параллельные прямые, свойства и признаки. Секущие ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3
Классы: 9,10,11

На стороне AB выпуклого четырёхугольника ABCD взяты точки K и L (точкаK лежит между A и L), а на стороне CD взяты точки M и N (точка M между C и N). Известно, что  AK = KN = DN  и  BL = BC = CM.  Докажите, что если BCNK – вписанный четырёхугольник, то и ADML тоже вписан.

Прислать комментарий     Решение

Задача 65752

Темы:   [ Выпуклые многоугольники ]
[ Доказательство от противного ]
[ Теория игр (прочее) ]
Сложность: 3
Классы: 10,11

Внутри выпуклого 100-угольника выбрана точка X, не лежащая ни на одной его стороне или диагонали. Исходно вершины многоугольника не отмечены. Петя и Вася по очереди отмечают ещё не отмеченные вершины 100-угольника, причём Петя начинает и первым ходом отмечает сразу две вершины, а далее каждый своим очередным ходом отмечает по одной вершине. Проигрывает тот, после чьего хода точка X будет лежать внутри многоугольника с отмеченными вершинами. Докажите, что Петя может выиграть, как бы ни ходил Вася.

Прислать комментарий     Решение

Задача 109521

Темы:   [ Простые числа и их свойства ]
[ Тождественные преобразования ]
Сложность: 3
Классы: 7,8,9

Натуральное число n таково, что числа  2n + 1  и  3n + 1  являются квадратами. Может ли при этом число  5n + 3  быть простым?

Прислать комментарий     Решение

Задача 109525

Темы:   [ Арифметика остатков (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3
Классы: 7,8,9

Целые числа x, y и z таковы, что  (x – y)(y – z)(z – x) = x + y + z.  Докажите, что число  x + y + z  делится на 27.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 1124]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .