ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 8]      



Задача 102853  (#25.1)

Темы:   [ Арифметика остатков (прочее) ]
[ Периодичность и непериодичность ]
Сложность: 3+
Классы: 7,8,9

На какие простые числа, меньшие 17, делится число  20022002 − 1?

Прислать комментарий     Решение

Задача 102854  (#25.2)

Тема:   [ Ребусы ]
Сложность: 2
Классы: 6,7

Решить ребус AC · CC · K = 2002 (разным цифрам соответствуют разные буквы и наоборот).
Прислать комментарий     Решение


Задача 102855  (#25.3)

Темы:   [ Уравнения в целых числах ]
[ Признаки делимости на 2 и 4 ]
Сложность: 3
Классы: 7,8,9

Решите уравнение в целых числах  m² − n² = 2002.

Прислать комментарий     Решение

Задача 102856  (#25.4)

Тема:   [ Уравнения в целых числах ]
Сложность: 3
Классы: 7,8,9

Решите уравнение  12a + 11b = 2002  в натуральных числах.

Прислать комментарий     Решение

Задача 102857  (#25.5)

Тема:   [ Геометрическая прогрессия ]
Сложность: 3-
Классы: 7,8

Найти сумму 1 + 2002 + 20022 + ... + 2002n.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 8]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .