ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]      



Задача 98547

Темы:   [ Процессы и операции ]
[ Принцип крайнего (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9

В строке записано несколько чисел. Каждую секунду робот выбирает какую-либо пару рядом стоящих чисел, в которой левое число больше правого, меняет их местами и при этом умножает оба числа на 2. Докажите, что через некоторое время сделать очередную такую операцию будет невозможно.

Прислать комментарий     Решение

Задача 98548

Темы:   [ Десятичная система счисления ]
[ Доказательство от противного ]
Сложность: 4
Классы: 10,11

Известно, что число 2333 имеет 101 цифру и начинается с цифры 1. Сколько чисел в ряду 2, 4, 8, 16, ..., 2333 начинается с цифры 4?

Прислать комментарий     Решение

Задача 98553

Темы:   [ Арифметическая прогрессия ]
[ Десятичная система счисления ]
Сложность: 4
Классы: 9,10,11

Все члены бесконечной арифметической прогрессии – натуральные числа. В каждом члене удалось подчеркнуть одну или несколько подряд идущих цифр так, что в первом члене оказалась подчёркнута цифра 1, во втором – 2,..., в 23-м – цифры 2 и 3 подряд, и так далее (для любого натурального n в n-м члене подчёркнутые цифры образовали число n). Докажите, что разность прогрессии – это степень числа 10.

Прислать комментарий     Решение

Задача 98554

Тема:   [ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 9,10,11

В ряд стоят 23 коробочки с шариками, причём для каждого числа n от 1 до 23 есть коробочка, в которой ровно n шариков. За одну операцию можно переложить в любую коробочку еще столько же шариков, сколько в ней уже есть, из какой-нибудь другой коробочки, в которой шариков больше. Всегда ли можно такими операциями добиться, чтобы в первой коробочке оказался 1 шарик, во второй – 2 шарика, и так далее, в 23-й – 23 шарика?

Прислать комментарий     Решение

Задача 98578

Темы:   [ Таблицы и турниры (прочее) ]
[ Перебор случаев ]
[ Четность и нечетность ]
Сложность: 4
Классы: 9,10,11

Колоду из 52 карт разложили в виде прямоугольника 13×4. Известно, что если две карты лежат рядом по вертикали или горизонтали, то они одной масти либо одного достоинства. Докажите, что в каждом горизонтальном ряду (из 13 карт) все карты одной масти.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 45]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .