ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 79659  (#2.2)

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3
Классы: 7,8

Даны шесть чисел: 1, 2, 3, 4, 5, 6. Разрешается к любым двум из них прибавлять по 1.
Можно ли, проделав это несколько раз, сделать эти числа равными?

Прислать комментарий     Решение

Задача 79660  (#2.3)

Темы:   [ Замощения костями домино и плитками ]
[ Прямоугольники и квадраты. Признаки и свойства ]
Сложность: 2
Классы: 6,7

Составьте из прямоугольников 1х1, 1х2, 1х3,…,1х13 прямоугольник, каждая сторона которого больше 1.
Прислать комментарий     Решение


Задача 79661  (#2.4)

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 2
Классы: 6,7

Натуральное число a увеличили на 1, а его квадрат увеличился на 1001. Чему равно a?
Прислать комментарий     Решение


Задача 79662  (#2.5)

Тема:   [ Последовательности ]
Сложность: 3
Классы: 5,6,7,8

Продолжите последовательность чисел: 1, 11, 21, 1112, 3112, 211213, 312213, 212223, 114213...
Прислать комментарий     Решение


Задача 79663  (#2.6)

Темы:   [ Ребусы ]
[ Задачи-шутки ]
Сложность: 2
Классы: 5,6,7

Найдите значение дроби В*А*Р*Е*Н*Ь*Е / К*А*Р*Л*С*О*Н, где разные буквы – это разные цифры, а между буквами стоит знак умножения.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .