ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
год/номер:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 557]      



Задача 86497

Тема:   [ Сумма длин диагоналей четырехугольника ]
Сложность: 3
Классы: 7,8,9

Существует ли выпуклый четырёхугольник, у которого сумма длин диагоналей не меньше периметра?

Прислать комментарий     Решение

Задача 86502

Темы:   [ Тождественные преобразования ]
[ Неравенство Коши ]
[ Выделение полного квадрата. Суммы квадратов ]
Сложность: 3
Классы: 8,9

Укажите все пары  (x; y),  для которых выполняется равенство   (x4 + 1)(y4 + 1) = 4x²y².

Прислать комментарий     Решение

Задача 86505

Темы:   [ Квадратные корни (прочее) ]
[ Уравнения в целых числах ]
[ Рациональные и иррациональные числа ]
Сложность: 3
Классы: 8,9

Найдите все значения а, для которых выражения   а +   и   1/а   принимают целые значения.

Прислать комментарий     Решение

Задача 86520

Темы:   [ Исследование квадратного трехчлена ]
[ Методы решения задач с параметром ]
Сложность: 3
Классы: 8,9,10,11

Про квадратный трехчлен  f(x) = ax² – ax + 1  известно, что  | f(x)| ≤ 1  при  0 ≤ x ≤ 1.  Найдите наибольшее возможное значение а.

Прислать комментарий     Решение

Задача 98380

Темы:   [ Десятичная система счисления ]
[ Производящие функции ]
[ Арифметическая прогрессия ]
Сложность: 3
Классы: 7,8,9,10

а) Для каждого трёхзначного числа берём произведение его цифр, а затем эти произведения, вычисленные для всех трёхзначных чисел, складываем. Сколько получится?
б) Тот же вопрос для четырёхзначных чисел.
Прислать комментарий     Решение


Страница: << 45 46 47 48 49 50 51 >> [Всего задач: 557]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .